Competitive Targeted Advertising with Price Discrimination

Rosa-Branca Esteves and Joana Resende
III Conference on the Economics of Advertising and Marketing
SP-SP Center, IESE

Barcelona, 11-12 June 2010
Outline

- Motivation
- Main questions
- More relevant literature
- Model
- Mass Advertising/Non-Discrimination
- Targeted Advertising/Price Discrimination
- Competitive Effects of TA and PD
- Concluding remarks and next steps!
Motivation

- Mass marketing techniques that dominated 20th century advertising are becoming outdated as online ad-targeting technology continues to advance.
Motivation

- Mass marketing techniques that dominated 20th century advertising are becoming outdated as online ad-targeting technology continues to advance.
- Firms have increasingly opted for ads that target specific consumer groups. (The Economist (2005))

"Price discrimination under customer recognition ... is by and large unlikely to raise significant antitrust concerns. In fact, as the economics literature suggests, such pricing practices in oligopoly markets often intensify competition and potentially benefit consumers." (Chen (2005), p. 123)

"Research on targeted advertising and price discrimination is of special importance" (Bagwell, (2005), p.142)
Motivation

- Mass marketing techniques that dominated 20th century advertising are becoming outdated as online ad-targeting technology continues to advance.
- Firms have increasingly opted for ads that target specific consumer groups. (The Economist (2005))
- The relative returns from targeted advertising may be higher due to advances in digital and information technologies that allow firms to recognise customers with different tastes and price discriminate.
Motivation

- Mass marketing techniques that dominated 20th century advertising are becoming outdated as online ad-targeting technology continues to advance.

- Firms have increasingly opted for ads that target specific consumer groups. (The Economist (2005))

- The relative returns from targeted advertising may be higher due to advances in digital and information technologies that allow firms to recognise customers with different tastes and price discriminate.

- “Price discrimination under customer recognition ... is by and large unlikely to raise significant antitrust concerns. In fact, as the economics literature suggests, such pricing practices in oligopoly markets often intensify competition and potentially benefit consumers.” (Chen (2005), p. 123)
Motivation

- Mass marketing techniques that dominated 20th century advertising are becoming outdated as online ad-targeting technology continues to advance.

- Firms have increasingly opted for ads that target specific consumer groups. (The Economist (2005))

- The relative returns from targeted advertising may be higher due to advances in digital and information technologies that allow firms to recognise customers with different tastes and price discriminate.

- “Price discrimination under customer recognition ... is by and large unlikely to raise significant antitrust concerns. In fact, as the economics literature suggests, such pricing practices in oligopoly markets often intensify competition and potentially benefit consumers.” (Chen (2005), p. 123)

- “Research on targeted advertising and price discrimination is of special importance” (Bagwell, (2005), p.142)
Main questions

- What are the competitive effects of price discrimination through targeted informative advertising?
- How does TA affect the firms’ optimal marketing mix (pricing and advertising)?
- Do firms advertise more to its strong (own) market or to the weak (rival’s) market?
- Do firms benefit from TA and PD?
- What are the welfare and consumer effects of PD by means of TA?
More relevant literature

- **Competitive Price Discrimination and Customer Recognition:**
 - Thissse and Vives (1988, AER); Bester and Petrakis (1996, IJIO); Corts (1988, RJE); Fudenberg and Tirole (2000, RJE); Villas-Boas (1999, RJE); Chen (1997, JEMS); Chen and Zhang (2009, IJIO); Esteves (2009, JIE), Esteves (2010, IJIO)

- **Informative Advertising**
 - Targeted Advertising: Roy (2000, JIE), Iyer et al. (2005, MS); Galeotti and Moraga-Gonzalez (2008, IJIO)

- **Mixed Pricing in Oligopoly**
Model

- Two firms, A and B are launching two new products.
- \(c = 0 \)
- Large number of potential buyers, with mass normalized to one.
- Consumers are initially uninformed about the existence and the price of the goods.
- Firms need to invest in advertising to generate awareness and demand
- Two segments of consumers with equal size, segment a and segment b.
Model

- Consumers in segment i prefer product i over product j by a degree equal to $\gamma > 0$.
- γ: minimum difference between the prices of the two competing products necessary to induce consumers to buy the least preferred product.
- After firms have sent their ads independently, in each segment of the market (a and b), there will be:
 - Captive consumers to A, a: buy A iff $v - p_A \geq 0$; b: buy A iff $v - p_A - \gamma \geq 0$.
 - Captive consumers to B, a: buy B iff $v - p_B - \gamma \geq 0$; b: buy B iff $v - p_B \geq 0$.
 - Selective consumers, a: buy A iff $v - p_A < v - p_B - \gamma$; b: buy A iff $v - p_A - \gamma < v - p_B$. Otherwise, buy B.
 - Non-informed consumers
Marketing strategies

Static game where firms choose advertising intensities and prices simultaneously and non-cooperatively.

- **Mass advertising and no price discrimination**
 - Firm i chooses its advertising level to the entire market (denoted by ϕ_i), and a price p_i to be quoted in all ads.

- **Targeted advertising and price discrimination**
 - Firm i chooses the levels of advertising to be targeted to its own and to the rival’s market (ϕ_i^o and ϕ_i^r, respectively) and the prices to be quoted in ads tailored to each group of consumers (p_i^o and p_i^r, respectively).
 - Perfect Targeting:
 \[
 \Pr(\text{fall in } i \mid \text{targeted to } i) = 1 \\
 \Pr(\text{fall in } i \mid \text{targeted to } j) = 0
 \]
Advertising technology:

- $A(\phi) = \lambda \eta(\phi)$: Cost of reaching a fraction ϕ of consumers.
- $A_\phi > 0$ and $A_{\phi\phi} \geq 0$.
- No fixed costs in advertising, i.e. $A(0) = 0$.
- Quadratic technology: $\eta(\phi) = \phi^2$.
- λ can be identified with the cost per ad.
Mass advertising and no discrimination

- Firm i chooses its advertising level to the entire market (denoted by ϕ_i), and a price p_i to be quoted in all ads.
- When $p_i < v - \gamma$, $\forall i = A, B$:

\[
D_i = \phi_i \left(1 - \phi_j\right) + \phi_i \phi_j \left[\frac{1}{2} \Pr (p_i - \gamma < p_j) + \frac{1}{2} \Pr (p_i + \gamma < p_j)\right]
\]

- Firm i's expected profit is:

\[
E \pi_i = p_i D_i - A (\phi_i).
\]
Mass advertising and no discrimination

- When $v < 2\gamma$ then a pure strategy equilibrium exists with $p_i = p_j = v$.
- When $2\gamma < v < 3\gamma$, there is a symmetric price equilibrium in pure strategies with $p_i = p_j = v - \gamma$, as long as $\phi_j < 1 - \frac{\gamma}{v - \gamma}$.
- When $v > 3\gamma$ then there is no pure strategy equilibrium in prices. There is however a mixed strategy Nash equilibrium in prices.
Proposition 2. In the benchmark case, with a mass advertising technology and no price discrimination, as long as $p_{\text{max}} < v - \gamma$

(i) each firm’s price is randomly chosen from the cdf given by

\[
F^m(p) = \begin{cases}
0 & \text{if } p < p_{\text{min}} \\
1 - \frac{2}{(\phi^m)^2} \left(\frac{p}{\phi^m} - \phi^m (1 - \phi^m) \right) & \text{if } p_{\text{min}} \leq p \leq p_{\text{max}} - \gamma \\
2 - \frac{2}{(\phi^m)^2} \left(\frac{p - \gamma}{\phi^m} - \phi^m (1 - \phi^m) \right) & \text{if } p_{\text{max}} - \gamma \leq p < p_{\text{max}} \\
1 & \text{if } p \geq p_{\text{max}}
\end{cases}
\]

with

\[p_{\text{min}} = p_{\text{max}} - 2\gamma \text{ and } p_{\text{max}} = \frac{2k^m}{\phi^m (2 - \phi^m)} + \gamma < v - \gamma.\]

For the mixed strategy price equilibrium in which firms compete for selective consumers to exist, it must be the case that $p_{\text{max}} < v - \gamma$, implying:

\[v > \gamma \left(\frac{2 - \phi^m}{\phi^m} \right) \left(1 + \sqrt{1 + \left(\frac{\phi^m}{2 - \phi^m} \right)^2} \right) + 2\gamma\]

From $k^m = \frac{\phi^m}{2} (p_{\text{max}} - \gamma) (2 - \phi^m)$ we obtain that:

\[k^m = \frac{\gamma}{2} (2 - \phi^m)^2 \left(1 + \sqrt{1 + \left(\frac{\phi^m}{2 - \phi^m} \right)^2} \right).
\]

(ii) Each firm chooses an advertising reach $\phi^m \in [0, 1]$, implicitly given by:

\[
\frac{1}{2} (p_{\text{max}} - \gamma) (2 - \phi^m) = A_{\phi}(\phi^m)
\]

(iii) Each firm earns an overall expected profit equal to

\[E\pi^m = \phi^m A_{\phi}(\phi^m) - A(\phi^m)\]
Mass Advertising and no discrimination

- Welfare:

\[W^m = v \left[1 - (1 - \phi^m)^2 \right] - EDC^m - 2A(\phi^m). \]

- Expected Desutility Cost:

\[EDC^m = \gamma \left[\phi^m (1 - \phi^m) + \frac{1}{2} (1 - q^m) \right]. \]

- Expected Consumer surplus:

\[ECS^m = W^m - \pi^m_{ind}. \]
Perfect targeted advertising and price discrimination

- Firm i's chooses an intensity of advertising to be targeted to its own and to the rival’s market (ϕ_i^o and ϕ_i^r, respectively) and the prices to be quoted in ads tailored to each group of consumers (p_i^o and p_i^r, respectively).
- Perfect target: no leakage between segments.
Perfect targeted advertising and price discrimination

- Firm i’s expected profit in its own segment:

$$E \pi_i^o = p_i^o \frac{\phi_i^o}{2} \left[\left(1 - \phi_j^r\right) + \phi_j^r \Pr(p_i^o < p_j^r + \gamma) \right] - A(\phi_i^o).$$

- Firm i’s expected profit in the rival’s market:

$$E \pi_i^r = p_i^r \frac{\phi_i^r}{2} \left[\left(1 - \phi_j^o\right) + \phi_j^o \Pr(p_i^r + \gamma < p_j^o) \right] - A(\phi_i^r).$$
Proposition 6. When target is perfect there is a symmetric Nash equilibrium in which:

(i) In its own market segment each firm \(i, i = A, B \) chooses a price randomly from the distribution \(F_i^o(p) \) given by

\[
F_i^0(p) = \begin{cases}
\frac{1}{\phi_i^o} \left[1 - \frac{(v-\gamma)(1-\phi_i^o)}{p-\gamma} \right] & \text{if } p \leq p_j^r \min + \gamma \\
1 & \text{if } p_j^r \min + \gamma \leq p \leq v \\
1 & \text{if } p \geq v
\end{cases}
\]

where \(p_j^r \min = (v - \gamma)(1 - \phi_i^o) \). The advertising level \(\phi_i^o \) is implicitly given by

\[
\frac{1}{2} v - \phi_i^o (v - \gamma) = A_{\phi_i^o} (\phi_i^o) \tag{15}
\]

or equivalently,

\[
p_i^o \min - \frac{1}{2} v = A_{\phi_i^o} (\phi_i^o) \]

with \(A_{\phi_i^o} (0) < \frac{1}{2} v \). Equilibrium profit in its own market is:

\[
E \pi_i^o = \phi_i^* A_{\phi_i^*} (\phi_i^*) + \frac{1}{2} (\phi_i^*)^2 (v - \gamma) - A (\phi_A^*). \tag{16}
\]
Equilibrium price and advertising decisions

(ii) In the rival's market segment each firm chooses a price randomly from the distribution \(F_r^i (p) \) given by

\[
F_r^i (p) = \begin{cases}
\frac{1}{\phi^{r^*}_i} \left(1 - \frac{v(1-\phi^{o*}_j)+\gamma \phi^{o*}_j}{p+\gamma} \right) & \text{if } p \leq p^r_{j \text{ min}} \\
1 & \text{if } p^r_{j \text{ min}} \leq p \leq v - \gamma \\
1 & \text{if } p \geq v - \gamma
\end{cases}
\]

The advertising level \(\phi^{r^*}_i \) is implicitly given by

\[
\frac{1}{2} (v - \gamma) - \frac{1}{2} \phi^{o*}_j (v - \gamma) = A_{\phi^r_i} (\phi^{r^*}_i), \tag{17}
\]

or, equivalently,

\[
\frac{1}{2} p^r_{j \text{ min}} = A_{\phi^r_i} (\phi^{r^*}_i), \tag{18}
\]

where \(\phi^{o*}_j \) solves condition (15) and \(A_{\phi^r_i} (0) < \frac{1}{2} (1 - \phi^{o*}_j) (v - \gamma) \). Equilibrium profit in the rival's market is:

\[
E \pi_i^{*r} = \phi^{*r}_i A_{\phi^r_i} (\phi^{*r}_i) - A (\phi^{*r}_i). \tag{19}
\]
Perfect Targeted Advertising and price discrimination

- The price equilibrium is always in mixed strategies and the level of advertising to each segment is chosen deterministically.
- Firm i uses a “Hi-Lo” pricing strategy in the rival’s market. To squeeze more surplus from its captive customers, it charges the highest price $\nu - \gamma$, with probability $m_i^r = 1 - \frac{\phi_i^o \cdot \phi_i^r}{\phi_i^o \cdot \phi_i^r} \left(1 - \frac{\gamma}{\nu} \right)$. However, in order to win the selective customers it announces occasionally a low price.
- When $\phi^r > \phi^o$, then a firm’s profit in its own market is higher than its profit in the rival’s market.
Advertising decisions:

- Regardless the advertising technology considered, when price discrimination is permitted and target advertising is perfect:
 - When advertising is costless, firms do not select full market coverage in its own market.
 - When advertising is cheap, i.e., if \(\lambda \) is such that \(\phi_i^o > \frac{\gamma}{v-\gamma} \), firms advertise more to the rival’s market.
 - When the advertising costs are high, i.e., if \(\lambda \) is such that \(\phi_i^o < \frac{\gamma}{v-\gamma} \), firms advertise more to its own market.
Quadratic technology: Advertising decisions

\[\phi^r \geq \phi^o \text{ when } \nu \geq \frac{1}{2} \left(3\gamma + \sqrt{\gamma^2 + 16\lambda\gamma}\right). \]

\[\phi^r < \phi^o \text{ when } 2\gamma < \nu < \frac{1}{2} \left(3\gamma + \sqrt{\gamma^2 + 16\lambda\gamma}\right). \]

When \(\nu \) is high enough firms advertise more to the rival’s market than to its own market!
Quadratic Technology:

- Firm j advertises more aggressively in segment i and faces a higher group of captive consumers than firm i.

![Graph showing different segments](image)
Competitive effects of targeted advertising and price discrimination

Effects on prices

- $F^k > F^m$, $k = o, r$.

- Average prices with TA/ND are above average price with MA/ND.
Competitive effects of targeted advertising and price discrimination

Effects on prices

- $F^k > F^m$, $k = o, r$.
- Average prices with TA/ND are above average price with MA/ND.
- Challenges the usual finding that PD may reduce all segment prices!
Competitive effects of targeted advertising and price discrimination

Effects on profits

- when v is high enough, equilibrium profit with TA/PD is above equilibrium profit with MA/ND.

- Challenges the usual finding that firms face a Prisoner’s dilemma result when PD is allowed!
Competitive effects of targeted advertising and price discrimination

Market expansion effects

- Price discrimination by means of targeted advertising may increase the number of consumers who stay out of the market in relation to MA/ND.
Welfare effects

- Welfare with TA/PD:

\[W^t = \nu \left[1 - (1 - \phi^o)(1 - \phi^r) \right] \]
\[- \gamma \left[\phi^r (1 - \phi^o) + \phi^o \phi^r (1 - \tau) \right] - 2A(\phi^o) - 2A(\phi^r). \]

- Welfare with MA/ND:

\[W^m = \nu \left[1 - (1 - \phi^m)^2 \right] \]
\[- \gamma \left[\phi^m(1 - \phi^m) + \frac{1}{2} (\phi^m)^2 (1 - q^m) \right] - 2A(\phi^m). \]

- Expected consumer:

\[ECS = W - \pi_{ind}. \]
Welfare effects

Table 1. Profits, Consumer Surplus and Welfare

<table>
<thead>
<tr>
<th></th>
<th>$\lambda = 2, v = 7$</th>
<th>$\lambda = 2, v = 8$</th>
<th>$\lambda = 3, v = 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E\pi_{ind}^t$</td>
<td>2.174</td>
<td>2.694</td>
<td>2.208</td>
</tr>
<tr>
<td>$E\pi_{ind}^m$</td>
<td>1.851</td>
<td>1.851</td>
<td>2.076</td>
</tr>
<tr>
<td>W^t</td>
<td>3.514</td>
<td>4.361</td>
<td>3.821</td>
</tr>
<tr>
<td>W^m</td>
<td>4.162</td>
<td>5.06</td>
<td>4.289</td>
</tr>
<tr>
<td>EC^S^t</td>
<td>1.34</td>
<td>1.667</td>
<td>1.613</td>
</tr>
<tr>
<td>EC^S^m</td>
<td>2.311</td>
<td>3.209</td>
<td>2.212</td>
</tr>
</tbody>
</table>

- TA/PD can boost industry profit at the expense of social welfare and consumer welfare.
Concluding remarks

- Targeted advertising might constitute a tool to dampen price competition.
Concluding remarks

- Targeted advertising might constitute a tool to dampen price competition.
- If advertising costs are sufficiently low in relation to the value of the goods, average prices with non-discrimination (mass advertising) are below those with price discrimination and targeted advertising (regardless of the market segment).
Concluding remarks

- Targeted advertising might constitute a tool to dampen price competition.
- If advertising costs are sufficiently low in relation to the value of the goods, average prices with non-discrimination (mass advertising) are below those with price discrimination and targeted advertising (regardless of the market segment).
- When (i) goods are imperfect substitutes, (ii) advertising is not too expensive, and (iii) targeted advertising constitutes an effective price discrimination tool:
Concluding remarks

- Targeted advertising might constitute a tool to dampen price competition.

- If advertising costs are sufficiently low in relation to the value of the goods, average prices with non-discrimination (mass advertising) are below those with price discrimination and targeted advertising (regardless of the market segment).

- When (i) goods are imperfect substitutes, (ii) advertising is not too expensive, and (iii) targeted advertising constitutes an effective price discrimination tool:
 - price discrimination through targeted advertising may be detrimental to social welfare since it boosts industry profits at the expense of consumer surplus.

- It is important to take into account different forms of market competition when trying to evaluate the welfare effects of price discrimination based on customer recognition.
Concluding remarks

- Targeted advertising might constitute a tool to dampen price competition.
- If advertising costs are sufficiently low in relation to the value of the goods, average prices with non-discrimination (mass advertising) are below those with price discrimination and targeted advertising (regardless of the market segment).
- When (i) goods are imperfect substitutes, (ii) advertising is not too expensive, and (iii) targeted advertising constitutes an effective price discrimination tool:
 - price discrimination through targeted advertising may be detrimental to social welfare since it boosts industry profits at the expense of consumer surplus.
 - It is important to take into account different forms of market competition when trying to evaluate the welfare effects of price discrimination based on customer recognition.
Next steps

- Imperfect targetability.
Next steps

- Imperfect targetability.
- Different advertising costs with mass and targeted advertising.
Next steps

- Imperfect targetability.
- Different advertising costs with mass and targeted advertising.

- THANK YOU :-(