Wall Street and Silicon Valley: A Delicate Interaction

George-Marios Angeletos Guido Lorenzoni Alessandro Pavan

Conference on Complementarities and Information
Barcelona, June 2007
• financial markets look at aggregate investment for clues about profitability
 (especially so during periods of intense technological change)
Motivation

- financial markets look at aggregate investment for clues about profitability (especially so during periods of intense technological change)

- firms’ incentives to invest depend on asset prices
Motivation

- financial markets look at aggregate investment for clues about profitability (especially so during periods of intense technological change)

- firms’ incentives to invest depend on asset prices

- two-way feedback between “Wall Street” and “Silicon Valley”
Motivation

- financial markets look at aggregate investment for clues about profitability (especially so during periods of intense technological change)
- firms’ incentives to invest depend on asset prices
- two-way feedback between “Wall Street” and “Silicon Valley”
- novel positive and normative implications under dispersed info
This paper

- a neoclassical environment:
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
 - 1st stage: real investment in the new technology ("Silicon Valley")
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
 - 1st stage: real investment in the new technology ("Silicon Valley")
 - 2nd stage: financial trades on installed capital ("Wall Street")
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
 - 1st stage: real investment in the new technology ("Silicon Valley")
 - 2nd stage: financial trades on installed capital ("Wall Street")
 - fully rational agents, perfectly competitive interactions
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
 - 1st stage: real investment in the new technology (“Silicon Valley”)
 - 2nd stage: financial trades on installed capital (“Wall Street”)
 - fully rational agents, perfectly competitive interactions

- only deviation: dispersed information
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
 - 1st stage: real investment in the new technology ("Silicon Valley")
 - 2nd stage: financial trades on installed capital ("Wall Street")
 - fully rational agents, perfectly competitive interactions

- only deviation: dispersed information

- two types of shocks
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
 - 1st stage: real investment in the new technology ("Silicon Valley")
 - 2nd stage: financial trades on installed capital ("Wall Street")
 - fully rational agents, perfectly competitive interactions

- only deviation: dispersed information

- two types of shocks
 - fundamental shocks (underlying profitability)
This paper

- a neoclassical environment:
 - new technology with completely exogenous profitability
 - 1st stage: real investment in the new technology ("Silicon Valley")
 - 2nd stage: financial trades on installed capital ("Wall Street")
 - fully rational agents, perfectly competitive interactions

- only deviation: **dispersed information**

- two types of shocks
 - fundamental shocks (underlying profitability)
 - expectational shocks (correlated errors)
Key results

- endogenous complementarity in investment decisions
Key results

- **endogenous complementarity** in investment decisions

- **source of non-fundamental volatility**
 - dampens fundamental shocks
 - amplifies expectational shocks
Key results

- **endogenous complementarity** in investment decisions

- source of **non-fundamental volatility**
 - dampens fundamental shocks
 - amplifies expectational shocks

- symptoms of **inefficiency**:
 - under-reaction to fundamental shocks
 - over-reaction to expectational shocks
Key results

- **endogenous complementarity** in investment decisions

- source of **non-fundamental volatility**
 - dampens fundamental shocks
 - amplifies expectational shocks

- symptoms of **inefficiency**:
 - under-reaction to fundamental shocks
 - over-reaction to expectational shocks

- policies that restore efficiency without info advantage for government
Key results

- helps explain "bubbly" episodes around new technologies (Internet, China)
 - without any deviation from rationality and the like
 - no presumption that government more “intelligent” than market
Key results

- helps explain "bubbly" episodes around new technologies (Internet, China)
 - without any deviation from rationality and the like
 - no presumption that government more “intelligent” than market

- complete micro-foundation of Keyens’ "beauty contest"
 - investment driven by higher-order expectations
 - importantly: this effect is a source of inefficiency
Plan

- Baseline Model
Plan

1. Baseline Model
2. Equilibrium
Plan

1. Baseline Model
2. Equilibrium
3. Constrained efficiency
Plan

1. Baseline Model
2. Equilibrium
3. Constrained efficiency
4. Policy
Plan

1. Baseline Model
2. Equilibrium
3. Constrained efficiency
4. Policy
5. Extensions
Model

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Model</th>
<th>Equilibrium</th>
<th>Constrained efficiency</th>
<th>Policy</th>
<th>Extensions</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
Timing and actions

- two types of agents, “entrepreneurs” and “traders”
Timing and actions

- two types of agents, “entrepreneurs” and “traders”

- $t = 0$: arrival of new technology of unknown productivity θ
Timing and actions

- two types of agents, “entrepreneurs” and “traders”
- $t = 0$: arrival of new technology of unknown productivity θ
- $t = 1$: entrepreneurs decide investment in new technology
Timing and actions

- two types of agents, “entrepreneurs” and “traders”

- $t = 0$: arrival of new technology of unknown productivity θ

- $t = 1$: entrepreneurs decide investment in new technology

- $t = 2$: entrepreneurs hit by “liquidity shock” sell to traders
Timing and actions

- Two types of agents, “entrepreneurs” and “traders”

- $t = 0$: arrival of new technology of unknown productivity θ

- $t = 1$: entrepreneurs decide investment in new technology

- $t = 2$: entrepreneurs hit by “liquidity shock” sell to traders

- $t = 3$: θ is revealed and payoffs are realized
Payoffs

- risk neutral preferences:

\[u_i = c_{i1} + c_{i2} + c_{i3} \]
Payoffs

- risk neutral preferences:
 \[u_i = c_{i1} + c_{i2} + c_{i3} \]

- investing \(k \) units at \(t = 1 \) costs \(\frac{1}{2}k^2 \)
- trading \(q \) units at \(t = 2 \) costs \(pq \)
- holding \(s \) units at \(t = 3 \) pays out \(\theta s \)
Payoffs

- risk neutral preferences:
 \[u_i = c_{i1} + c_{i2} + c_{i3} \]

- investing \(k \) units at \(t = 1 \) costs \(\frac{1}{2}k^2 \)
 trading \(q \) units at \(t = 2 \) costs \(pq \)
 holding \(s \) units at \(t = 3 \) pays out \(\theta s \)

- entrepreneurs:
 \[
 u_i = \begin{cases}
 pk_i - \frac{1}{2}k_i^2 & \text{if hit by liquidity shock (prob. } \lambda) \\
 \theta k_i - \frac{1}{2}k_i^2 & \text{if not (prob. } 1 - \lambda)
 \end{cases}
 \]
Payoffs

- risk neutral preferences:
 \[u_i = c_{i1} + c_{i2} + c_{i3} \]

- investing \(k \) units at \(t = 1 \) costs \(\frac{1}{2}k^2 \)
 trading \(q \) units at \(t = 2 \) costs \(pq \)
 holding \(s \) units at \(t = 3 \) pays out \(\theta s \)

- entrepreneurs:
 \[u_i = \begin{cases}
 pk_i - \frac{1}{2}k_i^2 & \text{if hit by liquidity shock (prob. } \lambda) \\
 \theta k_i - \frac{1}{2}k_i^2 & \text{if not (prob. } 1 - \lambda)
 \end{cases} \]

- traders:
 \[u_i = (\theta - p)q_i \]
Information

- at $t = 0$ nature draws $\theta \sim \mathcal{N}(\mu_\theta, \pi_\theta^{-1})$
Information

- at $t = 0$ nature draws $\theta \sim \mathcal{N}(\mu_\theta, \pi^{-1}_\theta)$

- at $t = 1$ entrepreneurs observe
 - private signals $x_i = \theta + \xi_i$, $\xi_i \sim \mathcal{N}(0, \pi^{-1}_x)$
 - common signal $y = \theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \pi^{-1}_y)$

- at $t = 2$ everybody observes K

- at $t = 3$ everybody observes θ and payoffs are realized
Information

- At $t = 0$ nature draws $\theta \sim \mathcal{N}(\mu_{\theta}, \pi_{\theta}^{-1})$.

- At $t = 1$ entrepreneurs observe

 - Private signals: $x_i = \theta + \xi_i$, $\xi_i \sim \mathcal{N}(0, \pi_x^{-1})$

 - Common signal: $y = \theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \pi_y^{-1})$

- At $t = 2$ everybody observes K.
Information

- at $t = 0$ nature draws $\theta \sim \mathcal{N}(\mu_\theta, \pi_\theta^{-1})$

- at $t = 1$ entrepreneurs observe
 - private signals $x_i = \theta + \xi_i$, $\xi_i \sim \mathcal{N}(0, \pi_x^{-1})$
 - common signal $y = \theta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \pi_y^{-1})$

- at $t = 2$ everybody observes K

- at $t = 3$ everybody observes θ and payoffs are realized
suppose dispersion of info vanishes at \(t = 2 \), so that \(p = \theta \)
suppose dispersion of info vanishes at $t = 2$, so that $p = \theta$

entrepreneur i chooses k_i at $t = 1$ so as to maximize

$$\mathbb{E}_i u = -\frac{1}{2}k_i^2 + \mathbb{E}_i [(1 - \lambda)\theta + \lambda p] k_i$$
A benchmark without informational frictions

- suppose dispersion of info vanishes at $t = 2$, so that $p = \theta$

- entrepreneur i chooses k_i at $t = 1$ so as to maximize

$$\mathbb{E}_i u = -\frac{1}{2}k_i^2 + \mathbb{E}_i [(1 - \lambda) \theta + \lambda p] k_i$$

- it follows

$$k_i = \mathbb{E}_i \theta$$
suppose dispersion of info vanishes at $t = 2$, so that $p = \theta$

entrepreneur i chooses k_i at $t = 1$ so as to maximize

$$\mathbb{E}_i u = -\frac{1}{2} k_i^2 + \mathbb{E}_i [(1 - \lambda) \theta + \lambda p] k_i$$

it follows

$$k_i = \mathbb{E}_i \theta$$

equil. investment driven only by first-order expectations

and independent of λ (of how much entrepreneurs care about asset prices)
An equilibrium is an investment strategy $k : \mathbb{R}^2 \rightarrow \mathbb{R}$ and a price function $p : \mathbb{R}^2 \rightarrow \mathbb{R}$ such that:

- for all (x, y),

$$k(x, y) \in \arg \max_k \mathbb{E} \left[-\frac{1}{2} k^2 + (1 - \lambda) \theta k + \lambda p(\theta, y) k \mid x, y \right];$$
An equilibrium is an investment strategy $k: \mathbb{R}^2 \rightarrow \mathbb{R}$ and a price function $p: \mathbb{R}^2 \rightarrow \mathbb{R}$ such that:

- for all (x,y),

 $$k(x,y) \in \arg\max_k \mathbb{E} \left[-\frac{1}{2}k^2 + (1 - \lambda) \theta k + \lambda p(\theta, y) k \mid x, y \right];$$

- for all (θ, y),

 $$p(\theta, y) = \mathbb{E} [\theta \mid K(\theta, y)],$$

where $K(\theta, y) \equiv \int k(x, y) d\Phi(x \mid \theta)$.

An equilibrium is an investment strategy $k : \mathbb{R}^2 \to \mathbb{R}$ and a price function $p : \mathbb{R}^2 \to \mathbb{R}$ such that:

- for all (x,y),
 $$k(x,y) \in \arg \max_k \mathbb{E} \left[-\frac{1}{2} k^2 + (1 - \lambda) \theta k + \lambda p(\theta, y) k \bigg| x, y \right];$$

- for all (θ, y),
 $$p(\theta, y) = \mathbb{E} \left[\theta \big| K(\theta, y) \right],$$

where $K(\theta, y) \equiv \int k(x,y) d\Phi(x|\theta)$.

A linear equilibrium is an equilibrium in which $p(\theta, y)$ is linear in (θ, y).
optimal investment of entrepreneurs:

\[k(x,y) = \mathbb{E}[(1 - \lambda) \theta + \lambda p | x, y] \]
Equilibrium

- optimal investment of entrepreneurs:
 \[k(x,y) = \mathbb{E}\left[(1 - \lambda) \theta + \lambda p \mid x, y \right] \]

- linearity of \(p(\theta,y) \) implies linearity of \(k(x,y) \):
 \[k(x,y) = \beta_0 + \beta_1 x + \beta_2 y \]
Equilibrium

- optimal investment of entrepreneurs:
 \[k(x,y) = \mathbb{E}[(1 - \lambda) \theta + \lambda p | x, y] \]

- linearity of \(p(\theta, y) \) implies linearity of \(k(x, y) \):
 \[k(x,y) = \beta_0 + \beta_1 x + \beta_2 y \]

- in equilibrium, \(K = K(\theta, y) \) is a noisy signal of \(\theta \)
Equilibrium

- optimal investment of entrepreneurs:

 \[
 k(x,y) = \mathbb{E} \left[(1 - \lambda) \theta + \lambda p \mid x,y \right]
 \]

- linearity of \(p(\theta,y) \) implies linearity of \(k(x,y) \):

 \[
 k(x,y) = \beta_0 + \beta_1 x + \beta_2 y
 \]

- in equilibrium, \(K = K(\theta,y) \) is a noisy signal of \(\theta \)

- it follows \(\exists \gamma_0, \gamma_1 \) s.t.

 \[
 \mathbb{E} [\theta \mid K] = \gamma_0 + \gamma_1 K
 \]
Equilibrium

- optimal investment of entrepreneurs:
 \[k(x,y) = \mathbb{E}[(1 - \lambda) \theta + \lambda p | x, y] \]

- linearity of \(p(\theta,y) \) implies linearity of \(k(x,y) \):
 \[k(x,y) = \beta_0 + \beta_1 x + \beta_2 y \]

- in equilibrium, \(K = K(\theta,y) \) is a noisy signal of \(\theta \)

- it follows \(\exists \gamma_0, \gamma_1 \) s.t.
 \[\mathbb{E}[\theta|K] = \gamma_0 + \gamma_1 K \]

- equilibrium price satisfies
 \[p = \gamma_0 + \gamma_1 K \]
optimal investment of entrepreneurs:

\[k(x,y) = \mathbb{E}[(1 - \lambda) \theta + \lambda p | x, y] \]

linearity of \(p(\theta, y) \) implies linearity of \(k(x, y) \):

\[k(x, y) = \beta_0 + \beta_1 x + \beta_2 y \]

in equilibrium, \(K = K(\theta, y) \) is a noisy signal of \(\theta \)

it follows \(\exists \gamma_0, \gamma_1 \) s.t.

\[\mathbb{E}[\theta | K] = \gamma_0 + \gamma_1 K \]

equilibrium price satisfies

\[p = \gamma_0 + \gamma_1 K \]

... endogenous complementarity!
Lemma

In any equilibrium, investment satisfies

\[k_i = \mathbb{E}_i [(1 - \alpha) \tilde{\theta} + \alpha K], \]

where \(\alpha \equiv \lambda \gamma_1 > 0 \) and \(\tilde{\theta} \equiv \frac{(1 - \lambda) \theta + \lambda \gamma_0}{1 - \lambda \gamma_1} \).
In any equilibrium, investment satisfies

\[k_i = \mathbb{E}_i[(1 - \alpha)\tilde{\theta} + \alpha K], \]

where \(\alpha \equiv \lambda \gamma_1 > 0 \) and \(\tilde{\theta} \equiv \frac{(1 - \lambda)\theta + \lambda \gamma_0}{1 - \lambda \gamma_1}. \)

In any equilibrium, the relative sensitivity of investment to the common signal increases with \(\alpha \) (equiv., with \(\gamma_1 \)):

\[\frac{\beta_2}{\beta_1} = \frac{\pi_y}{\pi_x (1 - \alpha)}. \]
Endogenous complementarity

- best response structure similar to
 Morris-Shin (*AER* 2002), Angeletos-Pavan (*Ecma* 2007), etc.
Endogenous complementarity

- best response structure similar to Morris-Shin (*AER* 2002), Angeletos-Pavan (*Ecma* 2007), etc.

- but complementarity is **endogenous**
Endogenous complementarity

- best response structure similar to Morris-Shin (*AER* 2002), Angeletos-Pavan (*Ecma* 2007), etc.

- but complementarity is **endogenous**

- $\alpha > 0$ because, and only because, high K is “good news” about θ
Endogenous complementarity

- but complementarity is **endogenous**

- $\alpha > 0$ because, and only because, high K is “good news” about θ

- when dispersion of info vanishes, complementarity also vanishes
Equilibrium characterization

- fixed point between equil strategy and equil price
Equilibrium characterization

- fixed point between equil strategy and equil price

\[\beta_2 / \beta_1 \rightarrow \]
Equilibrium characterization

- fixed point between equil strategy and equil price

\[\frac{\beta_2}{\beta_1} \rightarrow \text{signal-to-noise ratio in } K \]
fixed point between equil strategy and equil price

\[\beta_2 / \beta_1 \rightarrow \text{signal-to-noise ratio in } K \rightarrow \gamma_1 \]
Equilibrium characterization

- fixed point between equil strategy and equil price

\[\frac{\beta_2}{\beta_1} \rightarrow \text{signal-to-noise ratio in } K \rightarrow \gamma_1 \rightarrow \alpha \]
Equilibrium characterization

- fixed point between equil strategy and equil price

\[\frac{\beta_2}{\beta_1} \rightarrow \text{signal-to-noise ratio in } K \rightarrow \gamma_1 \rightarrow \alpha \rightarrow \frac{\beta_2}{\beta_1} \quad \ldots \]
Equilibrium characterization

Proposition

- *There always exists an equilibrium*
Equilibrium characterization

Proposition

- There always exists an equilibrium
- There robustly exist multiple equilibria
Equilibrium characterization

Proposition

- There always exists an equilibrium
- There robustly exist multiple equilibria
- The equilibrium is unique if λ is small enough
Equilibrium properties

Proposition

- There always exists an equilibrium
- There robustly exist multiple equilibria
- The equilibrium is unique if λ is small enough

Proposition

Whenever the equilibrium is unique,

- high investment is “good news” for profitability
Equilibrium properties

Proposition

- There always exists an equilibrium
- There robustly exist multiple equilibria
- The equilibrium is unique if λ is small enough

Proposition

Whenever the equilibrium is unique,

- high investment is “good news” for profitability
- α is positive and increasing in λ
Sensitivity to shocks

- write equilibrium aggregate investment as

\[K = \beta_0 + (\beta_1 + \beta_2) \theta + \beta_2 \epsilon \]
write equilibrium aggregate investment as

\[K = \beta_0 + (\beta_1 + \beta_2) \theta + \beta_2 \varepsilon \]

Corollary

*In any equilibrium in which high investment is “good news”,
relative impact of expectational shocks is higher with info frictions.*
Proposition

There exists $\hat{\lambda} \in (0, \bar{\lambda})$ such that, for all $\lambda \in [0, \hat{\lambda}]$, the following are true:

- absolute impact of expectational shocks higher with info frictions, and the more so the higher λ
Proposition

There exists $\lambda \in (0, \bar{\lambda})$ such that, for all $\lambda \in [0, \hat{\lambda}]$, the following are true:

- absolute impact of expectational shocks higher with info frictions, and the more so the higher λ
- the converse is true for fundamental shocks
Constrained efficiency

Definition

The efficient allocation is a strategy $k : \mathbb{R}^2 \to \mathbb{R}$ that maximizes ex-ante utility.
The efficient allocation is a strategy $k : \mathbb{R}^2 \rightarrow \mathbb{R}$ that maximizes ex-ante utility.

- financial trades are zero-sum transfers ⇒

$$E u = \frac{1}{2} \int_{x,y,\theta} \left\{ -\frac{1}{2} k(x,y)^2 + (1 - \lambda) \theta k(x,y) \right\} + \frac{1}{2} \int_{y,\theta} \theta \lambda K(\theta,y)$$
Constrained efficiency

Definition

The efficient allocation is a strategy $k : \mathbb{R}^2 \rightarrow \mathbb{R}$ that maximizes ex-ante utility

- financial trades are zero-sum transfers \Rightarrow

$$\mathbb{E}u = \frac{1}{2} \int_{x,y,\theta} \left\{ -\frac{1}{2} k(x,y)^2 + (1 - \lambda) \theta k(x,y) \right\} + \frac{1}{2} \int_{y,\theta} \theta \lambda K(\theta, y)$$

- social return to investment $= \theta :$

$$\mathbb{E}u = \frac{1}{2} \int_{x,y,\theta} \left\{ -\frac{1}{2} k(x,y)^2 + \theta k(x,y) \right\}$$
Proposition

The efficient investment strategy is unique and is given by

\[k(x, y) = \mathbb{E}[\theta|x, y] \]

for almost all \((x, y)\).
Constrained efficiency

Proposition

The efficient investment strategy is unique and is given by

\[k(x,y) = \mathbb{E}[\theta|x,y] \]

for almost all \((x,y)\).

Corollary

In any equilibrium in which high investment is “good news”,

relative impact of expectational shocks is inefficiently high.
To recap

- **positive result: amplification**

 info frictions \rightarrow *higher* sensitivity to expectational shocks
To recap

- **positive result: amplification**

 info frictions \rightarrow *higher* sensitivity to expectational shocks

- **normative result: inefficiency**

 info frictions \rightarrow *excessive* sensitivity to expectational shocks
contingent transfers at $t = 3$

$$m_i = -\tau(K, \theta) s_i + T(K, \theta)$$
Policy

- contingent transfers at $t = 3$

$$m_i = -\tau(K, \theta)s_i + T(K, \theta)$$

Proposition

There exists a unique linear tax scheme that implements the efficient allocation. The optimal marginal tax satisfies

$$\tau(\theta, K) = \tau_0 + \tau_1 \theta + \tau_2 K$$

with $\tau_0 > 0$, $\tau_1 < 0$, and $\tau_2 > 0$.

- no need for the government to “know better” than the market
contingent transfers at $t = 3$

$$m_i = -\tau(K, \theta)s_i + T(K, \theta)$$

Proposition

There exists a unique linear tax scheme that implements the efficient allocation. The optimal marginal tax satisfies

$$\tau(\theta, K) = \tau_0 + \tau_1 \theta + \tau_2 K$$

with $\tau_0 > 0$, $\tau_1 < 0$, and $\tau_2 > 0$.

- no need for the government to “know better” than the market
- no need to intervene during the fact
contingent transfers at $t = 3$

$$m_i = -\tau(K, \theta)s_i + T(K, \theta)$$

Proposition

There exists a unique linear tax scheme that implements the efficient allocation. The optimal marginal tax satisfies

$$\tau(\theta, K) = \tau_0 + \tau_1 \theta + \tau_2 K$$

with $\tau_0 > 0$, $\tau_1 < 0$, and $\tau_2 > 0$.

- no need for the government to “know better” than the market
- no need to intervene during the fact
- the key is to make marginal taxes increasing in aggregate investment
Extensions

- trading costs, downward slopping demands at $t = 2$
 \[\Rightarrow \text{source of strategic substitutability} \]
Extensions

- trading costs, downward slopping demands at $t = 2$
 \Rightarrow source of strategic **substitutability**

- entrepreneurs not hit by liquidity shock can also trade
 \Rightarrow **info aggregation** in the financial market
Extensions

- trading costs, downward slopping demands at $t = 2$
 \[\Rightarrow\] source of strategic **substitutability**

- entrepreneurs not hit by liquidity shock can also trade
 \[\Rightarrow\] **info aggregation** in the financial market

- traders can also invest
Extensions

- trading costs, downward slopping demands at \(t = 2 \)
 - \(\Rightarrow \) source of strategic **substitutability**

- entrepreneurs not hit by liquidity shock can also trade
 - \(\Rightarrow \) **info aggregation** in the financial market

- traders can also invest

- drop \(y \), introduce other unobserved sources of variation for \(K \)
Extensions

- equilibrium with frictions:

\[k_i = \mathbb{E}_i \left[(1 - \alpha) \tilde{\theta} + \alpha K \right] \]
Extensions

- equilibrium with frictions:

 \[k_i = \mathbb{E}_i \left[(1 - \alpha) \tilde{\theta} + \alpha K \right] \]

- equilibrium without frictions and efficient allocation:

 \[k_i = \mathbb{E}_i \left[(1 - \alpha^*) \tilde{\theta} + \alpha^* K \right], \]
Extensions

- equilibrium with frictions:

 \[k_i = E_i \left[\left(1 - \alpha \right) \tilde{\theta} + \alpha K \right] \]

- equilibrium without frictions and efficient allocation:

 \[k_i = E_i \left[\left(1 - \alpha^* \right) \tilde{\theta} + \alpha^* K \right] \]

 both \(\alpha \) and \(\alpha^* \) can be negative, but

 "good news" effect \(\iff \alpha > \alpha^* \)
Extensions

- equilibrium with frictions:

\[k_i = \mathbb{E}_i[(1-\alpha) \tilde{\theta} + \alpha K] \]

- equilibrium without frictions and efficient allocation:

\[k_i = \mathbb{E}_i[(1-\alpha^*) \tilde{\theta} + \alpha^* K] \]

- both \(\alpha \) and \(\alpha^* \) can be negative, but

"good news" effect \(\iff \alpha > \alpha^* \)

- key positive and normative results unaffected
Conclusion

- high investment is good news \Rightarrow endogenous complementarity
Conclusion

- high investment is good news \Rightarrow **endogenous complementarity**

- micro-foundation of (normative aspect of) beauty contest
Conclusion

- high investment is good news ⇒ endogenous complementarity

- micro-foundation of (normative aspect of) beauty contest

- source of both amplified non-fundamental volatility and inefficiency
Conclusion

- high investment is good news ⇒ \textit{endogenous complementarity}

- micro-foundation of (normative aspect of) beauty contest

- \textit{source of both amplified non-fundamental volatility and inefficiency}

- particularly relevant for periods of intense technological change
Conclusion

- high investment is good news ⇒ endogenous complementarity

- micro-foundation of (normative aspect of) beauty contest

- source of both amplified non-fundamental volatility and inefficiency

- particularly relevant for periods of intense technological change

- but also for business cycles