Comments on “Fear of miscoordination...”
by Sylvain Chassang

Conference on Complementarities and Information
Barcelona

June 15, 2007
Partnership game

Actions
- **1**: cooperate, the game goes on
- **0**: exit, the game stops

Payoffs
- **(1,1)**: flow
- All others, stock

Special case:
- Exit value = 0
- All payoffs are stocks
- \(V \) depends on the strategies in the future
- \(w_t \) are i.i.d

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(w_t)</td>
<td>(w_t - c + \beta V_E)</td>
</tr>
<tr>
<td>0</td>
<td>(b + V_E)</td>
<td>(V_E)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(w_t + \beta V - c)</td>
<td>(-c)</td>
</tr>
<tr>
<td>0</td>
<td>(b)</td>
<td>0</td>
</tr>
</tbody>
</table>
Common knowledge

• We can take w_t constant and $w - c > (1 - \beta)b$.

• Two equilibria with non-random strategies

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$w_t + \beta V - c$</td>
<td>$-c$</td>
</tr>
<tr>
<td>0</td>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>
Imperfect information

• Private signals

\[s_{it} = w_t + \sigma \varepsilon_{it}, \]

\[\varepsilon_{it} \text{ uniform on } [-1, 1], \]

\[\sigma \text{ arbitrarily small.} \]

• If a SRE, exists, then it has a monotone strategy

• Monotone strategy: cooperate if \(s > s^* \)
Solution

• Value of continuing cooperation

\[V(s^*) = \int \left(P(s > s^* \cap s' > s^* | w)(w + \beta V) - P(s > s^* \cap s' < s^* | w)c + P(s < s^* \cap s' > s^* | w)b \right) f(w)dw. \]

\[P(s > s^* | w) = \min\left(\max\left(\frac{w + \sigma - s^*}{2\sigma}, 0 \right), 1 \right) = g(w, s^*). \]

\[V(s^*) = \int g(w, s^*) \left((w + \beta V)g(w, s^*) + (1 - g(w, s^*))(b - c) \right) f(w)dw. \]

• Critical value \(s^* \) :

\[P(s' > s^* | s)(E(w|s) + \beta V - c) - P(s' < s^* | s)c \]

\[= P(s' > s^* | s)b \]

• With vanishing noise, \(P(s' > s^* | s^*) \approx 1/2 \) and \(E(w|s^*) \approx \sigma \).

• Solution \(s^* = b + 2c - \beta V \).
• Strategic complementarity between periods

\[s^* = b + 2c - \beta V. \]

• More cooperation in the future, higher continuation value \(V \), lower \(s^* \), and more cooperation today

• Set of equilibria depends on the prior:

 • diffuse prior, multiple equilibria

 • concentrated prior, unique equilibrium
Figure 1: Equilibria with diffuse prior
Figure 2: Equilibrium with concentrated prior
Directions

• (very) short period
 • little is gained by deviation

• “Inertia”, main mechanism in previous model of regime switches (QJE 1999)
 • no delay, but a version (non stationary) of the model can be extended:
 • three possible values of the cost (flow) of cooperation: low (cooperation dominant), high (non cooperation dominant), middle (cooperation only if a sufficient mass of others cooperate)
 • Poisson processes for individuals from low to high cost
 • Initial position, individuals cooperate if they can.
 • Solution: unique equilibrium in which individuals cooperate as long as they can; first best solution
• Exit and entry are no symmetric
• In a game of entry with small number of players, Markov strategy may not be appropriate
• Game of entry by Gale (ET, 1995): agents can induce others to follow; guarantee of a lower-bound of the payoff; (vanishingly short periods solve the coordination problem)
• Previous model of exits with three costs is not isomorph to entry.

• Iterated elimination without common knowledge in multiple periods?
• CC (2006). “Complementarities in Information Acquisition With Short-term Trades”: Glosten-Milgrom model with two regions of the price where agents get information or do not get information