When Are Signals Complements or Substitutes?

Tilman Börgers: University of Michigan
Angel Hernando-Veciana: Universidad Carlos III de Madrid
Daniel Krähmer: Freie Universität Berlin

Barcelona
June 15, 2007
Introduction
Introduction

• We develop notions of complementarity and substitutability of two signals
Introduction

• We develop notions of *complementarity and substitutability* of two signals

• We consider the following situation:
Introduction

- We develop notions of complementarity and substitutability of two signals

- We consider the following situation:
 - There is a single decision maker (DM) who has to make a decision
 - Outcome of the decision depends on an unknown state of the world
Introduction

• We develop notions of complementarity and substitutability of two signals

• We consider the following situation:
 – There is a single decision maker (DM) who has to make a decision
 – Outcome of the decision depends on an unknown state of the world
 – The DM can potentially observe two signals ...

... that contain information about the state of the world
Introduction
Introduction

• Question: How does the *incentive to acquire a signal* depend on ...

... whether the DM *does or does not* have the other signal already?
Introduction

• Question: How does the incentive to acquire a signal depend on ...
 ... whether the DM does or does not have the other signal already?

• Signals are complements when ...
 ... the incentive to acquire one signal increases ...
 ... as the other signal becomes available
Introduction

• Question: How does the incentive to acquire a signal depend on ...
 ... whether the DM does or does not have the other signal already?

• Signals are complements when ...
 ... the incentive to acquire one signal increases ...
 ... as the other signal becomes available

• Signals are substitutes when ...
 ... the incentive to acquire one signal decreases ...
 ... as the other signal becomes available
Introduction
Introduction

• The incentive to acquire a signal depends on ...

... the *specific* decision problem at hand
Introduction

• The incentive to acquire a signal depends on ...
 ... the specific decision problem at hand

• This paper: we say that signals are compl. (subst.) when ...
 – ... they are compl. (subst.) in ALL decision problems
Introduction

• The incentive to acquire a signal depends on ...
 ... the specific decision problem at hand

• This paper: we say that signals are compl. (subst.) when ...
 – ... they are compl. (subst.) in ALL decision problems

• We seek conditions on the joint signal distribution such that ...
 ... signals are complements or substitutes
Introduction

- The incentive to acquire a signal depends on ...
 - ... the specific decision problem at hand

- **This paper**: we say that signals are compl. (subst.) when ...
 - ... they are compl. (subst.) in **ALL** decision problems

- We seek **conditions on the joint signal distribution** such that ...
 - ... signals are complements or substitutes

- This approach is in the spirit of **Blackwell** (1951)
Introduction

- The incentive to acquire a signal depends on ...
 ... the specific decision problem at hand

- This paper: we say that signals are compl. (subst.) when ...
 - ... they are compl. (subst.) in ALL decision problems

- We seek conditions on the joint signal distribution such that ...
 ... signals are complements or substitutes

- This approach is in the spirit of Blackwell (1951)
 - many pairs of signals will be neither complements nor substitutes
Example: Complements
Example: Complements

- Two states: $s \in \{-1, +1\}$, two realizations per signal: $\sigma_i \in \{-1, +1\}$
Example: Complements

- **Two** states: $s \in \{-1, +1\}$, **two** realizations per signal: $\sigma_i \in \{-1, +1\}$
- **Joint** signal distribution conditional on the state

\[
\begin{array}{c|cc}
\sigma_1 \backslash \sigma_2 & -1 & +1 \\
\hline
-1 & 0 & 1/2 \\
+1 & 1/2 & 0 \\
\end{array}
\]

State -1

\[
\begin{array}{c|cc}
\sigma_1 \backslash \sigma_2 & -1 & +1 \\
\hline
-1 & 1/2 & 0 \\
+1 & 0 & 1/2 \\
\end{array}
\]

State $+1$
Example: Complements

- **Two** states: $s \in \{-1, +1\}$, **two** realizations per signal: $\sigma_i \in \{-1, +1\}$
- **Joint** signal distribution conditional on the state

<table>
<thead>
<tr>
<th>$\sigma_1 \setminus \sigma_2$</th>
<th>−1</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>+1</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

State −1

<table>
<thead>
<tr>
<th>$\sigma_1 \setminus \sigma_2$</th>
<th>−1</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>+1</td>
<td>0</td>
<td>1/2</td>
</tr>
</tbody>
</table>

State +1

- Each signal **alone** is uninformative, i.e. $P[\sigma_i | -1] = P[\sigma_i | +1]$
Example: Complements

- **Two** states: $s \in \{-1, +1\}$, **two** realizations per signal: $\sigma_i \in \{-1, +1\}$

- **Joint** signal distribution conditional on the state

<table>
<thead>
<tr>
<th>$\sigma_1 \backslash \sigma_2$</th>
<th>−1</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>+1</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

State -1

<table>
<thead>
<tr>
<th>$\sigma_1 \backslash \sigma_2$</th>
<th>−1</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>+1</td>
<td>0</td>
<td>1/2</td>
</tr>
</tbody>
</table>

State $+1$

- Each signal **alone** is uninformative, i.e. $P[\sigma_i \mid -1] = P[\sigma_i \mid +1]$

- But **jointly** signals fully reveal the state
Example: Complements

- **Two** states: \(s \in \{-1, +1\} \), **two** realizations per signal: \(\sigma_i \in \{-1, +1\} \)
- **Joint** signal distribution conditional on the state

\[
\begin{array}{c|cc}
\sigma_1 \backslash \sigma_2 & -1 & +1 \\
\hline
-1 & 0 & 1/2 \\
+1 & 1/2 & 0 \\
\end{array}
\quad
\begin{array}{c|cc}
\sigma_1 \backslash \sigma_2 & -1 & +1 \\
\hline
-1 & 1/2 & 0 \\
+1 & 0 & 1/2 \\
\end{array}
\]

- **State** \(-1\)
- **State** \(+1\)

- Each signal **alone** is uninformative, i.e.
 \[P[\sigma_i \mid -1] = P[\sigma_i \mid +1] \]
- But **jointly** signals fully reveal the state
- Example: signal 1 = **coded communication**, signal 2 = **encryption code**
Contribution of the paper
Contribution of the paper

• First attempt to \textit{systematically} conceptualize compl. (subst.) of information
Contribution of the paper

• First attempt to **systematically** conceptualize compl. (subst.) of information

• We provide a **general** characterization of compl. (subst.):
Contribution of the paper

- First attempt to **systematically** conceptualize compl. (subst.) of information

- We provide a **general** characterization of compl. (subst.):

 – relate compl. (subst.) to a Blackw.-comparison of two auxiliary signals
Contribution of the paper

• First attempt to **systematically** conceptualize compl. (subst.) of information

• We provide a **general** characterization of compl. (subst.):
 – relate compl. (subst.) to a Blackw.-comparison of two auxiliary signals

• We give a characterization in a **specific** setting:
Contribution of the paper

• First attempt to **systematically** conceptualize compl. (subst.) of information

• We provide a **general** characterization of compl. (subst.):
 – relate compl. (subst.) to a Blackw.-comparison of two auxiliary signals

• We give a characterization in a **specific** setting:
 – binary state space, binary signals with symmetry restriction
Contribution of the paper

• First attempt to **systematically** conceptualize compl. (subst.) of information

• We provide a **general** characterization of compl. (subst.):
 – relate compl. (subst.) to a Blackw.-comparison of two auxiliary signals

• We give a characterization in a **specific** setting:
 – binary state space, binary signals with symmetry restriction

• We derive some intuitive general **necessary** conditions
Contribution of the paper

• First attempt to *systematically* conceptualize compl. (subst.) of information

• We provide a **general** characterization of compl. (subst.):
 – relate compl. (subst.) to a Blackw.-comparison of two auxiliary signals

• We give a characterization in a **specific** setting:
 – binary state space, binary signals with symmetry restriction

• We derive some intuitive general **necessary** conditions

• **Applications**: second price auction, strategic information acquisition
Literature
Literature

• Radner and Stiglitz (1984): **Non-concavity** in the value of information
 – specific decision problem
Literature

• Radner and Stiglitz (1984): **Non-concavity** in the value of information
 – specific decision problem

• Informational complementarity in **specific contexts**
 – Milgrom and Weber (1982): Auctions
 – Persico (2004): Information acquisition in committees
Set–up and Definitions: Statistical environment
Set–up and Definitions: Statistical environment

• A finite state space S
Set-up and Definitions: Statistical environment

- A finite state space S
- Two signals, $\tilde{\sigma}_1$ and $\tilde{\sigma}_2$, with realizations, σ_1 and σ_2, in the finite sets S_1 and S_2
Set–up and Definitions: Statistical environment

• A finite state space S

• Two signals, $\tilde{\sigma}_1$ and $\tilde{\sigma}_2$, with realizations, σ_1 and σ_2, in the finite sets S_1 and S_2

• Joint distribution of $(\tilde{\sigma}_1, \tilde{\sigma}_2)$ conditional on state s:

$$p_s : S_1 \times S_2 \rightarrow [0, 1]$$
Set–up and Definitions: Statistical environment

- A finite state space S
- Two signals, $\tilde{\sigma}_1$ and $\tilde{\sigma}_2$, with realizations, σ_1 and σ_2, in the finite sets S_1 and S_2
- Joint distribution of $(\tilde{\sigma}_1, \tilde{\sigma}_2)$ conditional on state s:
 \[p_s : S_1 \times S_2 \rightarrow [0, 1] \]
- Marginal distribution of $\tilde{\sigma}_i$ conditional on state s:
 \[p_{i,s} : S_i \rightarrow [0, 1] \]
Set–up and Definitions: Decision problem
Set–up and Definitions: Decision problem

- A decision problem is a triple \((\pi, A, u)\) where
Set–up and Definitions: Decision problem

• A decision problem is a triple (π, A, u) where

 ◊ π is a probability distribution on the state space S
Set–up and Definitions: Decision problem

- A decision problem is a triple \((\pi, A, u)\) where
 - \(\pi\) is a probability distribution on the state space \(S\)
 - \(A\) is a finite action space
Set–up and Definitions: Decision problem

- A **decision problem** is a triple \((\pi, A, u)\) where
 - \(\pi\) is a probability distribution on the state space \(S\)
 - \(A\) is a finite action space
 - \(u : A \times S \rightarrow \mathbb{R}\) is a (state-dependent) utility–function
Set-up and Definitions: Value
Set–up and Definitions: Value

- **Fix** a decision problem \((\pi, A, u)\)
Set–up and Definitions: Value

- **Fix** a decision problem \((\pi, A, u)\)

- Value of signals
Set–up and Definitions: Value

- **Fix** a decision problem \((\pi, A, u)\)

- **Value of signals**

\[
V_\emptyset \equiv \max_{a \in A} \sum_{s \in S} u(a, s) \pi(s)
\]
Set–up and Definitions: Value

• **Fix** a decision problem \((\pi, A, u) \)

• Value of signals

\[
V_\emptyset \equiv \max_{a \in A} \sum_{s \in S} u(a, s) \pi(s)
\]

\[
V_i \equiv \sum_{\sigma_i \in S_i} \max_{a \in A} \sum_{s \in S} u(a, s) p_{i,s}(\sigma_i) \pi(s)
\]
Set-up and Definitions: Value

- **Fix** a decision problem \((\pi, A, u)\)

- **Value of signals**

\[
V_\emptyset \equiv \max_{a \in A} \sum_{s \in S} u(a, s) \pi(s)
\]

\[
V_i \equiv \sum_{\sigma_i \in S_i} \max_{a \in A} \sum_{s \in S} u(a, s) p_{i,s}(\sigma_i) \pi(s)
\]

\[
V_{1,2} \equiv \sum_{\sigma_1 \in S_1} \sum_{\sigma_2 \in S_2} \max_{a \in A} \sum_{s \in S} u(a, s) p_s(\sigma_1, \sigma_2) \pi(s)
\]
Complementarity and substitutability
Complementarity and substitutability

• Signals are complements if for all decision problems

\[V_{1,2} - V_1 \geq V_2 - V_\emptyset \quad \text{and} \quad V_{1,2} - V_2 \geq V_1 - V_\emptyset. \]
Complementarity and substitutability

- Signals are **complements** if for **all** decision problems

\[V_{1,2} - V_1 \geq V_2 - V_{\emptyset} \quad \text{and} \quad V_{1,2} - V_2 \geq V_1 - V_{\emptyset}. \]

- “WTP” for one signal goes **up** as the other becomes available.
Complementarity and substitutability

• Signals are complements if for all decision problems

\[V_{1,2} - V_1 \geq V_2 - V_\emptyset \quad \text{and} \quad V_{1,2} - V_2 \geq V_1 - V_\emptyset. \]

– “WTP” for one signal goes up as the other becomes available

– Inequalities are equivalent
Complementarity and substitutability

• Signals are **complements** if for all decision problems

\[V_{1,2} - V_1 \geq V_2 - V_{\emptyset} \quad and \quad V_{1,2} - V_2 \geq V_1 - V_{\emptyset}. \]

– “WTP” for one signal goes **up** as the other becomes available
– Inequalities are equivalent

• Signals are **substitutes** if for all decision problems

\[V_{1,2} - V_1 \leq V_2 - V_{\emptyset} \quad and \quad V_{1,2} - V_2 \leq V_1 - V_{\emptyset}. \]
Complementarity and substitutability

- Signals are **complements** if for all decision problems

\[V_{1,2} - V_1 \geq V_2 - V_{\emptyset} \quad \text{and} \quad V_{1,2} - V_2 \geq V_1 - V_{\emptyset}. \]

- “WTP” for one signal goes up as the other becomes available

- Inequalities are equivalent

- Signals are **substitutes** if for all decision problems

\[V_{1,2} - V_1 \leq V_2 - V_{\emptyset} \quad \text{and} \quad V_{1,2} - V_2 \leq V_1 - V_{\emptyset}. \]

- “WTP” for one signal goes down as the other becomes available
Complementarity and substitutability

• Signals are **complements** if for all decision problems

\[V_{1,2} - V_1 \geq V_2 - V_\emptyset \quad \text{and} \quad V_{1,2} - V_2 \geq V_1 - V_\emptyset. \]

– “WTP” for one signal goes **up** as the other becomes available
– Inequalities are equivalent

• Signals are **substitutes** if for all decision problems

\[V_{1,2} - V_1 \leq V_2 - V_\emptyset \quad \text{and} \quad V_{1,2} - V_2 \leq V_1 - V_\emptyset. \]

– “WTP” for one signal goes **down** as the other becomes available
– Inequalities are equivalent
A general result
A general result

- Re-write complementarity inequality:
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_{\emptyset} \]
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_{\emptyset} \geq \]
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_\emptyset \geq V_1 + V_2 \]
A general result

• Re-write complementarity inequality:

\[V_{1,2} + V_{\emptyset} \geq V_1 + V_2 \iff \]
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_{\emptyset} \geq V_1 + V_2 \iff \frac{1}{2} \cdot V_{1,2} + \frac{1}{2} \cdot V_{\emptyset} \]
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_\emptyset \geq V_1 + V_2 \iff \frac{1}{2} \cdot V_{1,2} + \frac{1}{2} \cdot V_\emptyset \geq \]
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_\emptyset \geq V_1 + V_2 \iff \frac{1}{2} \cdot V_{1,2} + \frac{1}{2} \cdot V_\emptyset \geq \frac{1}{2} \cdot V_1 + \frac{1}{2} \cdot V_2 \]
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_\emptyset \geq V_1 + V_2 \iff \]
\[\frac{1}{2} \cdot V_{1,2} + \frac{1}{2} \cdot V_\emptyset \geq \frac{1}{2} \cdot V_1 + \frac{1}{2} \cdot V_2 \]

- LHS = value of a signal \(\tilde{\sigma}_L \), defined by:

 - with \(\frac{1}{2} \) get signal \((\tilde{\sigma}_1, \tilde{\sigma}_2)\) and with \(\frac{1}{2} \) get no signal
A general result

- Re-write complementarity inequality:

\[V_{1,2} + V_\emptyset \geq V_1 + V_2 \iff \]
\[\frac{1}{2} \cdot V_{1,2} + \frac{1}{2} \cdot V_\emptyset \geq \frac{1}{2} \cdot V_1 + \frac{1}{2} \cdot V_2 \]

- **LHS** = value of a signal $\tilde{\sigma}_L$, defined by:
 - with $1/2$ get signal $(\tilde{\sigma}_1, \tilde{\sigma}_2)$ and with $1/2$ get no signal

- **RHS** = value of a signal $\tilde{\sigma}_R$, defined by:
 - with $1/2$ get signal $\tilde{\sigma}_1$ and with $1/2$ get signal $\tilde{\sigma}_2$
A general result

• Re-write complementarity inequality:

\[V_{1,2} + V_\emptyset \geq V_1 + V_2 \iff \frac{1}{2} \cdot V_{1,2} + \frac{1}{2} \cdot V_\emptyset \geq \frac{1}{2} \cdot V_1 + \frac{1}{2} \cdot V_2 \]

• LHS = value of a signal \(\tilde{\sigma}_L \), defined by:
 – with \(\frac{1}{2} \) get signal \((\tilde{\sigma}_1, \tilde{\sigma}_2) \) and with \(\frac{1}{2} \) get no signal

• RHS = value of a signal \(\tilde{\sigma}_R \), defined by:
 – with \(\frac{1}{2} \) get signal \(\tilde{\sigma}_1 \) and with \(\frac{1}{2} \) get signal \(\tilde{\sigma}_2 \)

• Signals are complements \(\iff \) \(\tilde{\sigma}_L \) is more valuable than \(\tilde{\sigma}_R \)
A general result

- Signals are complements ⇔
 - Blackwell–dominates $\tilde{\sigma}_L$ Blackwell–dominates $\tilde{\sigma}_R$: $\tilde{\sigma}_R = \tilde{\sigma}_L + \text{noise}$
A general result

• Signals are complements ⇔
 ◊ \(\tilde{\sigma}_L \) Blackwell–dominates \(\tilde{\sigma}_R \): \(\tilde{\sigma}_R = \tilde{\sigma}_L + \text{noise} \)

• Signals are substitutes ⇔
 ◊ \(\tilde{\sigma}_R \) Blackwell–dominates \(\tilde{\sigma}_L \): \(\tilde{\sigma}_L = \tilde{\sigma}_R + \text{noise} \)
Symmetric Binary Example
Symmetric Binary Example

- Two states: $S = \{a, b\}$
Symmetric Binary Example

• Two states: \(S = \{ a, b \} \)

• Two realizations per signal: \(S_1 = \{ \alpha, \beta \}, \quad S_2 = \{ \hat{\alpha}, \hat{\beta} \} \)
Symmetric Binary Example

- Two states: \(S = \{a, b\} \)
- Two realizations per signal: \(S_1 = \{\alpha, \beta\}, \quad S_2 = \{\hat{\alpha}, \hat{\beta}\} \)

- Symmetry:

```
\[\begin{array}{c|cc}
\alpha & \hat{\alpha} & \hat{\beta} \\
\hline
x_a & y_a \\
\beta & y_a & z_a \\
\end{array}\]
```

```
\[\begin{array}{c|cc}
\alpha & \hat{\alpha} & \hat{\beta} \\
\hline
x_b & y_b \\
\beta & y_b & z_b \\
\end{array}\]
```

state \(a \) state \(b \)
Symmetric Binary Example

- **Two states:** \(S = \{ a, b \} \)

- **Two realizations per signal:** \(S_1 = \{ \alpha, \beta \} \), \(S_2 = \{ \hat{\alpha}, \hat{\beta} \} \)

- **Symmetry:**

 \[
 \begin{array}{|c|c|c|}
 \hline
 & \hat{\alpha} & \hat{\beta} \\
 \hline
 \alpha & x_a & y_a \\
 \hline
 \beta & y_a & z_a \\
 \hline
 \end{array}
 \quad
 \begin{array}{|c|c|c|}
 \hline
 & \hat{\alpha} & \hat{\beta} \\
 \hline
 \alpha & x_b & y_b \\
 \hline
 \beta & y_b & z_b \\
 \hline
 \end{array}
 \]

- **Wlog:** \(x_a + y_a > x_b + y_b \) (i.e. \(\alpha \) and \(\hat{\alpha} \) indicate state \(a \))
Symmetric Binary Example

- **Two** states: \(S = \{ a, b \} \)

- **Two** realizations per signal: \(S_1 = \{ \alpha, \beta \}, \ S_2 = \{ \hat{\alpha}, \hat{\beta} \} \)

- **Symmetry:**

 \[
 \begin{array}{c|cc}
 & \hat{\alpha} & \hat{\beta} \\
 \hline
 \alpha & x_a & y_a \\
 \beta & y_a & z_a \\
 \end{array}
 \quad
 \begin{array}{c|cc}
 & \hat{\alpha} & \hat{\beta} \\
 \hline
 \alpha & x_b & y_b \\
 \beta & y_b & z_b \\
 \end{array}
 \]

 state a \quad state b

- **Wlog:** \(x_a + y_a > x_b + y_b \) (i.e. \(\alpha \) and \(\hat{\alpha} \) indicate state \(a \))

- **Assume:** \(\forall \sigma_i \exists s : p_{i,s}(\sigma_i) > 0, \ \exists (\sigma_1, \sigma_2) : p_a(\sigma_1, \sigma_2) \neq p_b(\sigma_1, \sigma_2) \)
Symmetric Binary Example: Substitutes
Symmetric Binary Example: Substitutes

• **Proposition**: Signals are substitutes \(\Leftrightarrow\)
Symmetric Binary Example: Substitutes

- **Proposition**: Signals are substitutes ⇔

 \[p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0 \text{ for all } s \]
Symmetric Binary Example: Substitutes

• Proposition: Signals are substitutes ⇔

◊ $p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0$ for all s

◊ i.e. perfect correlation: observing σ_i fully reveals σ_j
Symmetric Binary Example: Substitutes

- **Proposition**: Signals are substitutes \iff

 $\diamond \quad p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0$ for all s

 \diamond i.e. **perfect correlation**: observing σ_i fully reveals σ_j

- **Proof**: “\Leftarrow”
Symmetric Binary Example: Substitutes

• **Proposition**: Signals are substitutes ⇔

 ◦ $p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0$ for all s

 ◦ i.e. **perfect correlation**: observing σ_i fully reveals σ_j

• Proof: “⇐”

 – If signals are perfectly correlated: $V_{1,2} - V_i = 0$
Symmetric Binary Example: Substitutes

• **Proposition:** Signals are substitutes \iff

 $p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0$ for all s

 i.e. **perfect correlation:** observing σ_i fully reveals σ_j
Symmetric Binary Example: Substitutes

- **Proposition:** Signals are substitutes ⇔

 ✤ $p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0$ for all s

 ✤ i.e. **perfect correlation:** observing σ_i fully reveals σ_j

- **Proof:** “⇒”
Symmetric Binary Example: Substitutes

• Proposition: Signals are substitutes ⇔

\[p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0 \text{ for all } s \]

\[\Diamond \text{ i.e. perfect correlation: observing } \sigma_i \text{ fully reveals } \sigma_j \]

• Proof: “⇒”

– Spose signals are not perfectly correlated.
Symmetric Binary Example: Substitutes

- **Proposition:** Signals are substitutes \iff
 - $p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0$ for all s
 - i.e. **perfect correlation:** observing σ_i fully reveals σ_j

- **Proof:** “\Rightarrow”
 - Spose signals are not perfectly correlated.
 - Then there is a two-action problem such that:
Symmetric Binary Example: Substitutes

- **Proposition**: Signals are substitutes ⇔

 - $p_s(\alpha, \widehat{\beta}) = p_s(\beta, \widehat{\alpha}) = 0$ for all s

 - i.e. perfect correlation: observing σ_i fully reveals σ_j

- **Proof**: “⇒”

 - Spose signals are not perfectly correlated.

 - Then there is a two-action problem such that:

 - Observing α or observing β does NOT induce a switch in action ...
Symmetric Binary Example: Substitutes

• Proposition: Signals are substitutes ⇔

 ◦ \[p_s(\alpha, \hat{\beta}) = p_s(\beta, \hat{\alpha}) = 0 \] for all \(s \)

 ◦ i.e. perfect correlation: observing \(\sigma_i \) fully reveals \(\sigma_j \)

• Proof: “⇒”

 – Spose signals are not perfectly correlated.

 – Then there is a two-action problem such that:

 – Observing \(\alpha \) or observing \(\beta \) does NOT induce a switch in action ...

 – ... but observing, say \((\beta, \hat{\beta}) \) does \(\Rightarrow V_{1,2} - V_j > V_i - V_\emptyset = 0 \)
Symmetric Binary Example: Complements
Symmetric Binary Example: Complements

• **Proposition:** Signals are **complements** ⇔
Symmetric Binary Example: Complements

- **Proposition**: Signals are complements ⇔

 \[p_a(\alpha, \hat{\alpha}) \leq p_b(\alpha, \hat{\alpha}) \quad \text{or} \quad p_a(\beta, \hat{\beta}) \geq p_b(\beta, \hat{\beta}) \]
Symmetric Binary Example: Complements

- **Proposition**: Signals are complements ⇔

 \[p_a(\alpha, \hat{\alpha}) \leq p_b(\alpha, \hat{\alpha}) \quad \text{or} \quad p_a(\beta, \hat{\beta}) \geq p_b(\beta, \hat{\beta}) \]

- The left condition says:
 - observing \((\alpha, \hat{\alpha})\) weakly raises the likelihood of state \(b\)
Symmetric Binary Example: Complements

- **Proposition**: Signals are complements ⇔

 \[p_a(\alpha, \hat{\alpha}) \leq p_b(\alpha, \hat{\alpha}) \quad \text{or} \quad p_a(\beta, \hat{\beta}) \geq p_b(\beta, \hat{\beta}) \]

- The left condition says:
 - observing \((\alpha, \hat{\alpha})\) weakly raises the likelihood of state \(b\)

- Complementarity involves a reversal of meaning:
 - recall: \(\alpha\) or \(\hat{\alpha}\) alone weakly raises the likelihood of state \(a\)
Symmetric Binary Example: Complements

• **Proposition**: Signals are **complements** ⇔

\[p_a(\alpha, \hat{\alpha}) \leq p_b(\alpha, \hat{\alpha}) \quad \text{or} \quad p_a(\beta, \hat{\beta}) \geq p_b(\beta, \hat{\beta}) \]

• The **left** condition says:
 – observing \((\alpha, \hat{\alpha})\) weakly **raises** the likelihood of state \(b\)

• Complementarity involves a **reversal of meaning**:
 – recall: \(\alpha\) or \(\hat{\alpha}\) alone weakly raises the likelihood of state \(a\)
 – the second signal “reverses the meaning” of the first signal
Symmetric Binary Example: Complements

- **Proposition**: Signals are complements ⇔
 \[p_a(\alpha, \hat{\alpha}) \leq p_b(\alpha, \hat{\alpha}) \text{ or } p_a(\beta, \hat{\beta}) \geq p_b(\beta, \hat{\beta}) \]

- The **left** condition says:
 - observing \((\alpha, \hat{\alpha})\) weakly raises the likelihood of state \(b\)

- Complementarity involves a **reversal of meaning**:
 - recall: \(\alpha\) or \(\hat{\alpha}\) alone weakly raises the likelihood of state \(a\)
 - the second signal “reverses the meaning” of the first signal

- **Right** condition: \(\hat{\beta}\) “reverses the meaning” of \(\beta\)
Symmetric Binary Example: Complements

- Idea of the proof
Symmetric Binary Example: Complements

• Idea of the proof
 – Step 1: It is enough to consider two-action problems only
Symmetric Binary Example: Complements

• Idea of the proof
 – Step 1: It is enough to consider two-action problems only
 – Step 2: Calculate values in two-action problems ("straightforward")
Symmetric Binary Example: Complements

• Idea of the proof
 – Step 1: It is enough to consider two-action problems only
 – Step 2: Calculate values in two-action problems ("straightforward")

• In step 1 we use that signals are symmetric and binary
 – does presumably not work with more than two signal realizations
Application: Second price auction
Application: Second price auction

- Two bidders, i, j
Application: Second price auction

- **Two** bidders, \(i, j \)

- **One object with value** \(s \in \{0, 1\} \) **common** to both bidders
Application: Second price auction

- Two bidders, i, j
- One object with value $s \in \{0, 1\}$ common to both bidders
- Symmetric, binary example: $s = 0 = a, \quad s = 1 = b$
Application: Second price auction

- Two bidders, i, j
- One object with value $s \in \{0, 1\}$ common to both bidders
- Symmetric, binary example: $s = 0 = a, s = 1 = b$
- Bidder i privately observes signal $\tilde{\sigma}_i$
Application: Second price auction

- Two bidders, i, j
- One object with value $s \in \{0, 1\}$ common to both bidders
- Symmetric, binary example: $s = 0 = a$, $s = 1 = b$
- Bidder i privately observes signal $\tilde{\sigma}_i$
 - each signal by itself is informative
 \rightarrow Observing β or $\hat{\beta}$ alone is “good” news
Application: Second price auction

- Two bidders, i, j
- One object with value $s \in \{0, 1\}$ common to both bidders
- Symmetric, binary example: $s = 0 = a, s = 1 = b$
- Bidder i privately observes signal $\tilde{\sigma}_i$
 - each signal by itself is informative
 \rightarrow Observing β or $\hat{\beta}$ alone is “good” news
- Highest bid wins and pays second highest bid
Application: Second price auction

- Two bidders, i, j

- One object with value $s \in \{0, 1\}$ common to both bidders

- Symmetric, binary example: $s = 0 = a$, $s = 1 = b$

- Bidder i privately observes signal $\tilde{\sigma}_i$
 - each signal by itself is informative
 \rightarrow Observing β or $\hat{\beta}$ alone is “good” news

- Highest bid wins and pays second highest bid

- Focus on symmetric equilibria
Second price auction
Second price auction

• For this talk: each realization \((\sigma_1, \sigma_2)\) has strictly positive probability
Second price auction

- For this talk: each realization \((\sigma_1, \sigma_2)\) has **strictly positive** probability
 - **rules out substitutes** (substitutes immediate)
Second price auction

- For this talk: each realization \((\sigma_1, \sigma_2)\) has **strictly positive** probability
 - rules out substitutes (substitutes immediate)

- Define **posteriors**:
 \[
 \text{post}(\sigma_1, \sigma_2) = P[b \mid (\sigma_1, \sigma_2)]
 \]
Second price auction

• For this talk: each realization \((\sigma_1, \sigma_2)\) has strictly positive probability
 – rules out substitutes (substitutes immediate)

• Define posteriors: \(\text{post}(\sigma_1, \sigma_2) = P[b \mid (\sigma_1, \sigma_2)]\)

• Orderings:
Second price auction

• For this talk: each realization (σ_1, σ_2) has strictly positive probability
 – rules out substitutes (substitutes immediate)

• Define posteriors: $\text{post}(\sigma_1, \sigma_2) = P[b \mid (\sigma_1, \sigma_2)]$

• Orderings:

$\text{(1)} \quad \text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta)$:
Second price auction

- For this talk: each realization \((\sigma_1, \sigma_2)\) has strictly positive probability
 - rules out substitutes (substitutes immediate)

- Define posteriors: \(\text{post}(\sigma_1, \sigma_2) = P[b \mid (\sigma_1, \sigma_2)]\)

- Orderings:

 1. \(\text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta)\):

 2. \(\text{post}(\alpha, \hat{\beta}) \leq \text{post}(\alpha)\):
Second price auction

- For this talk: each realization \((\sigma_1, \sigma_2)\) has strictly positive probability
 - rules out substitutes (substitutes immediate)

- Define posteriors: \(\text{post}(\sigma_1, \sigma_2) = P[b \mid (\sigma_1, \sigma_2)]\)

- Orderings:

 1. \(\text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta)\):

 2. \(\text{post}(\alpha, \hat{\beta}) \leq \text{post}(\alpha)\):

 3. \(\text{post}(\beta) \leq \text{post}(\alpha, \hat{\beta})\):
SPA: Case (1)

• Proposition: If \(\text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta) \)
SPA: Case (1)

- Proposition: If \(\text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta) \)

 - There is a unique symmetric equilibrium

\[\text{bid} = \text{post}(\sigma, \hat{\sigma}) \quad (\rightarrow \text{Milgrom/Weber}) \]
SPA: Case (1)

• Proposition: If \(\text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta) \)

 – There is a unique symmetric equilibrium

 \[\text{bid} = \text{post}(\sigma, \hat{\sigma}) \] \(\rightarrow \) Milgrom/Weber

 – Bidders get positive expected ex ante utility
SPA: Case (1)

• Proposition: If \(post(\alpha) < post(\alpha, \hat{\beta}) < post(\beta) \)

 – There is a unique symmetric equilibrium

 \[\rightarrow \text{ bid } = post(\sigma, \hat{\sigma}) \quad (\rightarrow \text{ Milgrom/Weber}) \]

 – Bidders get positive expected ex ante utility

• (1): \(\Leftrightarrow \) \(post(\alpha, \hat{\alpha}) < post(\alpha) \quad \text{and} \quad post(\beta, \hat{\beta}) > post(\beta) \)
SPA: Case (1)

• Proposition: If $\text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta)$

 – There is a **unique symmetric equilibrium**

 $\rightarrow \quad \text{bid} = \text{post}(\sigma, \hat{\sigma})$
 \hspace{1em} (→ Milgrom/Weber)

 – Bidders get **positive** expected ex ante utility

• (1): $\leftrightarrow \quad \text{post}(\alpha, \hat{\alpha}) < \text{post}(\alpha)$ \hspace{1em} and \hspace{1em} $\text{post}(\beta, \hat{\beta}) > \text{post}(\beta)$

• Complementarity **violates** (1) \hspace{1em} \rightarrow no “reversal of meaning”
SPA: Case (1)

- Proposition: If $\text{post}(\alpha) < \text{post}(\alpha, \hat{\beta}) < \text{post}(\beta)$

 - There is a unique symmetric equilibrium

 \[\Rightarrow \text{bid} = \text{post}(\sigma, \hat{\sigma}) \quad (\Rightarrow \text{Milgrom/Weber}) \]

 - Bidders get positive expected ex ante utility

- (1): $\Leftrightarrow \text{post}(\alpha, \hat{\alpha}) < \text{post}(\alpha)$ and $\text{post}(\beta, \hat{\beta}) > \text{post}(\beta)$

- Complementarity violates (1) \Rightarrow no “reversal of meaning”

- Remark: Affiliation implies (1)
SPA: Case (2)
SPA: Case (2)

- Proposition: If \(\text{post}(\alpha, \hat{\beta}) \leq \text{post}(\alpha) \)
SPA: Case (2)

• Proposition: If \(\text{post}(\alpha, \hat{\beta}) \leq \text{post}(\alpha) \)

 – There is no symmetric equilibrium in pure strategies
SPA: Case (2)

- Proposition: If \(\text{post}(\alpha, \beta) \leq \text{post}(\alpha) \)

 - There is no symmetric equilibrium in pure strategies

 - There is a unique symmetric equilibrium in mixed strategies
SPA: Case (2)

- Proposition: If \(\text{post}(\alpha, \hat{\beta}) \leq \text{post}(\alpha) \)

 - There is no symmetric equilibrium in pure strategies

 - There is a unique symmetric equilibrium in mixed strategies

 - Bidders get zero expected utility (\(\rightarrow \) full surplus extraction)
SPA: Case (2)

• Proposition: If \(\text{post}(\alpha, \hat{\beta}) \leq \text{post}(\alpha) \)

 – There is no symmetric equilibrium in pure strategies

 – There is a unique symmetric equilibrium in mixed strategies

 – Bidders get zero expected utility (\(\rightarrow \) full surplus extraction)

• \((2) \iff \text{post}(\alpha, \hat{\alpha}) \geq \text{post}(\alpha)\)
SPA: Case (2)

- Proposition: If \(\text{post}(\alpha, \hat{\beta}) \leq \text{post}(\alpha) \)
 - There is \textbf{no} symmetric equilibrium in pure strategies
 - There is a \textbf{unique} symmetric equilibrium in mixed strategies
 - Bidders get \textbf{zero} expected utility (\(\rightarrow \) full surplus extraction)

- \((2) \iff \text{post}(\alpha, \hat{\alpha}) \geq \text{post}(\alpha)\)

- Complementarity \textbf{implies} (2) when \(\hat{\alpha} \) reverses the meaning of \(\alpha \):
 \[
 \text{post}(\alpha, \hat{\alpha}) \geq P[b] \quad (\quad > \text{post}(\alpha) \quad)
 \]
Why are MW strategies no equ?

$(\beta, \hat{\alpha})$
Why are MW strategies no equ?

- Suppose \((\text{post}(\alpha, \hat{\alpha}), \text{post}(\beta, \hat{\beta}))\) was an equilibrium
Why are MW strategies no equ?

- Suppose \((\text{post}(\alpha, \hat{\alpha}), \text{post}(\beta, \hat{\beta}))\) was an equilibrium

- Suppose \(\text{post}(\beta, \hat{\beta}) > \text{post}(\alpha, \hat{\alpha})\), and consider high signal bidder \((\beta)\)
Why are MW strategies no equ?

- Suppose \((\text{post}(\alpha, \hat{\alpha}), \text{post}(\beta, \hat{\beta})) \) was an equilibrium

- Suppose \(\text{post}(\beta, \hat{\beta}) > \text{post}(\alpha, \hat{\alpha}) \), and consider high signal bidder \((\beta) \)

- Two possible events:
Why are MW strategies no equ?

• Suppose \((\text{post}(\alpha, \hat{\alpha}), \text{post}(\beta, \hat{\beta}))\) was an equilibrium

• Suppose \(\text{post}(\beta, \hat{\beta}) > \text{post}(\alpha, \hat{\alpha})\), and consider high signal bidder \((\beta)\)

• Two possible events:

 1. bid ties \(\Rightarrow\) zero utility (otherwise: incentive to deviate)
Why are MW strategies no equ?

- Suppose \(\text{post}(\alpha, \hat{\alpha}), \text{post}(\beta, \hat{\beta}) \) was an equilibrium
- Suppose \(\text{post}(\beta, \hat{\beta}) > \text{post}(\alpha, \hat{\alpha}) \), and consider high signal bidder \(\beta \)

- Two possible events:
 1. bid ties \(\Rightarrow \) zero utility (otherwise: incentive to deviate)
 2. bid wins \(\Rightarrow \) rival bidder is \(\hat{\alpha} \)
Why are MW strategies no equ?

- Suppose \((\text{post}(\alpha, \hat{\alpha}), \text{post}(\beta, \hat{\beta}))\) was an equilibrium

- Suppose \(\text{post}(\beta, \hat{\beta}) > \text{post}(\alpha, \hat{\alpha})\), and consider high signal bidder \((\beta)\)

- Two possible events:
 1. bid ties \(\Rightarrow\) zero utility (otherwise: incentive to deviate)
 2. bid wins \(\Rightarrow\) rival bidder is \(\hat{\alpha}\)

 \[\Rightarrow \text{price} = \text{post}(\alpha, \hat{\alpha}) \quad \text{and} \quad \text{value} = \text{post}(\beta, \hat{\alpha})\]
Why are MW strategies no equ?

- Suppose \((\text{post}(\alpha, \hat{\alpha}), \text{post}(\beta, \hat{\beta}))\) was an equilibrium

- Suppose \(\text{post}(\beta, \hat{\beta}) > \text{post}(\alpha, \hat{\alpha})\), and consider high signal bidder \((\beta)\)

- Two possible events:
 1. bid ties \(\Rightarrow\) zero utility (otherwise: incentive to deviate)
 2. bid wins \(\Rightarrow\) rival bidder is \(\hat{\alpha}\)

\[\Rightarrow \text{price} = \text{post}(\alpha, \hat{\alpha}) \quad \text{and} \quad \text{value} = \text{post}(\beta, \hat{\alpha})\]

\[\Rightarrow\] negative utility
Intuition for zero utility result

\((\beta, \hat{\alpha})\)
Intuition for zero utility result

- Consider a high signal bidder \((\beta)\). \(Y\) = support of his bids
Intuition for zero utility result

- Consider a high signal bidder \((\beta)\). \(Y\) = support of his bids

- Two possible events:
Intuition for zero utility result

- Consider a high signal bidder \((\beta)\). \(Y\) = support of his bids

- Two possible events:

1. win at price in \(Y\) \(\Rightarrow\) zero utility \((\text{otherwise: incentive to deviate})\)
Intuition for zero utility result

- Consider a high signal bidder (β). $Y =$ support of his bids

- Two possible events:

1. win at price in Y \Rightarrow zero utility (otherwise: incentive to deviate)

2. win at price not in Y \Rightarrow rival bidder is $\hat{\alpha}$

 \Rightarrow value of the good is lowest possible: $\text{post}(\beta, \hat{\alpha})$
Intuition for zero utility result

- Consider a high signal bidder \((\beta)\). \(Y\) = support of his bids

- Two possible events:

1. win at price in \(Y\) \(\Rightarrow\) zero utility (otherwise: incentive to deviate)

2. win at price not in \(Y\) \(\Rightarrow\) rival bidder is \(\hat{\alpha}\)

 \(\Rightarrow\) value of the good is lowest possible: \(post(\beta, \hat{\alpha})\)

 - Moreover, in a symmetric equ.: price \(\geq\) lowest possible value

 \(\Rightarrow\) zero utility
SPA: Case (3)

- Proposition: If \(\text{post}(\beta) \leq \text{post}(\alpha, \hat{\beta}) \)
SPA: Case (3)

- Proposition: If $\text{post}(\beta) \leq \text{post}(\alpha, \hat{\beta})$
 - There is no symmetric equilibrium in pure strategies
SPA: Case (3)

- Proposition: If $\text{post}(\beta) \leq \text{post}(\alpha, \hat{\beta})$

 - There is no symmetric equilibrium in pure strategies

 - There is a unique symmetric equilibrium in mixed strategies
SPA: Case (3)

- Proposition: If $\text{post}(\beta) \leq \text{post}(\alpha, \hat{\beta})$

 - There is no symmetric equilibrium in pure strategies

 - There is a unique symmetric equilibrium in mixed strategies

 - Bidders get positive expected ex ante utility
SPA: Case (3)

• Proposition: If $\text{post}(\beta) \leq \text{post}(\alpha, \hat{\beta})$

 – There is no symmetric equilibrium in pure strategies

 – There is a unique symmetric equilibrium in mixed strategies

 – Bidders get positive expected ex ante utility

• $(3) \iff \text{post}(\beta, \hat{\beta}) \leq \text{post}(\beta)$
SPA: Case (3)

• Proposition: If \(\text{post}(\beta) \leq \text{post}(\alpha, \hat{\beta}) \)

 – There is no symmetric equilibrium in pure strategies

 – There is a unique symmetric equilibrium in mixed strategies

 – Bidders get positive expected ex ante utility

• \((3) \iff \text{post}(\beta, \hat{\beta}) \leq \text{post}(\beta)\)

• Complementarity implies (2) when \(\hat{\beta} \) reverses the meaning of \(\beta \):

 \[
 \text{post}(\beta, \hat{\beta}) \leq P[b] \quad (\text{< post}(\beta))
 \]
Intuition for positive utility result

$(\beta, \hat{\alpha})$
Intuition for positive utility result

- Consider a high signal bidder (β). $Y =$ support of his bids
Intuition for positive utility result

- Consider a high signal bidder (β). $Y =$ support of his bids

1. win at price in $Y \implies$ zero utility
Intuition for positive utility result

- Consider a high signal bidder \((\beta)\). \(Y = \text{support of his bids}\)

1. win at price in \(Y \Rightarrow\) zero utility

2. win at price not in \(Y\)
 \(\Rightarrow\) value of the good is highest possible: \(\text{post}(\beta, \hat{\alpha})\)
Intuition for positive utility result

- Consider a high signal bidder (β). $Y =$ support of his bids

1. win at price in Y \Rightarrow zero utility

2. win at price not in Y

\Rightarrow value of the good is highest possible: $\text{post}(\beta, \hat{\alpha})$

- It can be shown:
 - low signal bidder ($\hat{\alpha}$) bids outside of Y with pos. prob.
 - bids outside of Y are below the bids in Y

\Rightarrow high signal bidder makes strictly pos. utility at such bids
Second price auction: summary
Second price auction: summary

- Under complementarity:
 - there is no symmetric equilibrium in pure strategies
 - bidders might make zero utility
Second price auction: summary

• Under complementarity:
 – there is no symmetric equilibrium in pure strategies
 – bidders might make zero utility

• Complementarity is sufficient, but not necessary for this
Second price auction: summary

- Under complementarity:
 - there is no symmetric equilibrium in pure strategies
 - bidders might make zero utility

- Complementarity is sufficient, but not necessary for this

- Reason: in contrast to the standard case with affiliated signals, ...
 ... signals are not well-ordered under complementarity
Conclusion and further questions
Conclusion and further questions

• Strong notion
 – restrict set of decision problems
 – e.g. monotone problems a la Athey and Levin (2001)
Conclusion and further questions

• Strong notion
 – restrict set of decision problems
 – e.g. monotone problems a la Athey and Levin (2001)

• Compl. (subst.) matter when preferences are interdependent
 – Voting games, auctions
Conclusion and further questions

• Strong notion
 – restrict set of decision problems
 – e.g. monotone problems a la Athey and Levin (2001)

• Compl. (subst.) matter when preferences are interdependent
 – Voting games, auctions

• Sequential information acquisition
 – what is the incentive to acquire an additional signal ...

... conditional on having observed one signal already