On Optimal Communication Networks

Antoni Calvó-Armengol (ICREA-UAB) and Joan de Martí (UPF)

ICREA and Universitat Autònoma de Barcelona

Conference Complementarities and Information
Outline

1. Introduction

2. Model and Results

3. A Family of Networked Communication Processes
Example (Krackhardt and Hanson, 1993)

- The network is incomplete.
- Different people have different information.
The Model: Information Structure

Common Prior

Prior: \(\theta \sim N(\theta_0, \phi_\theta) \)

Communication Process, \(P \)

Communication Report: \(y^P_i = \theta + \epsilon^P_i \)

where \(\epsilon^P | \theta \sim MN \left(0, \phi_\epsilon \Sigma^P \right) \)

We assume in this presentation that \(\sigma_{ij} \leq \sigma_{ii} \) for all \(j \).
Posterior Expectations

Linear precision weights

\[\mathbb{E}_i^P [\theta] = (1 - f_i^P) \theta_0 + f_i^P \hat{y}_i ; \quad \mathbb{E}_i^P [y_j^P] = (1 - \omega_{ji}^P) \theta_0 + \omega_{ji}^P \hat{y}_i \]

With \(\alpha = \phi_\epsilon / \phi_\theta \),

\[f_i^P = \frac{1}{1 + \alpha \sigma_{ii}^P} \]
\[\omega_{ij}^P = \frac{1 + \alpha \sigma_{ij}^P}{1 + \alpha \sigma_{jj}^P} \]
The Model: Payoffs

Let $r \in (0, 1)$.

$$u_i = -(1 - r)(a_i - \theta)^2 - r \frac{1}{n-1} \sum_{j \neq i} (a_i - a_j)^2 \quad i \in \mathcal{N}$$

Decision Problem

Coordination Problem

\Rightarrow beauty contest game.
Equilibrium Analysis

Best- Replies

$$BR_i(a_{-i}) = (1 - r) E^p_i[\theta] + r \frac{1}{n-1} \sum_{j \neq i} E^p_j[a_j] \quad i \in N$$

Nestedness and q-order beliefs ($\theta_0 = 0$)

$$E^p_{i_1}E^p_{i_2} \cdots E^p_{i_q}[\theta] = f^p_{i_q} \omega^p_{i_q} i_{q-1} \cdots \omega^p_{i_2 i_1} \hat{y}_{i_1}$$

\Rightarrow Higher-order beliefs are also linear on the information each agent receives.
The Knowledge Index

Let $\rho = \frac{r}{n-1}$. The knowledge index of agent i aggregates all levels of beliefs discounted by the common factor ρ. Formally,

$$k^P = (1 - r) (I - \rho \Omega)^{-1} \cdot 1 = (1 - r) \left(I + \rho \Omega + \rho^2 \Omega^2 + \cdots \right) \cdot 1$$

The knowledge index is in $[0, 1]$. It reaches one with fully informative input signals; otherwise, it varies across agents.
The unique Bayes-Nash equilibrium for the communication process \mathbb{P} has linear strategies

$$a_i^\mathbb{P} = \left(1 - k_i^\mathbb{P}\right) \theta_0 + k_i^\mathbb{P} \mathbb{E}_i^\mathbb{P} [\theta]$$

- Agents rely on their signal in proportion to their knowledge index; otherwise, the mean prior acts as a focal point.
Theorem

If $\theta_0 = 0$ the equilibrium aggregate ex-ante payoffs are

$$U_P = (1 - r) \phi_\theta \left[\sum_{i=1}^{n} f_i^P \left(k_i^P \right)^2 - n \right] \leq 0$$

- Under complete information ($\phi_\theta = 0$), no welfare loss.

\Rightarrow comparative statics with respect to coordination concern, informativeness, accuracies and correlations.
Comparative Statics: Information

Remember that

\[U^* = (1 - r) \phi_\theta \left[\sum_{i=1}^{n} f_i^p (k_i^p)^2 - n \right] \leq 0 \]

Proposition

If \((f(\Sigma'), \Omega(\Sigma')) \geq (f(\Sigma), \Omega(\Sigma))\), then \(U^*(r, \Sigma') \geq U^*(r, \Sigma)\).
Comparative Statics: Accuracy and Covariances.

We can write $\sigma_{ij} = \gamma_{ij} \sqrt{\sigma_{ii} \sigma_{jj}}$ with $\gamma_{ij} \in [0, 1]$ for all $i \neq j$. Σ is fully characterized by a vector $\sigma = (\sigma_{11}, \ldots, \sigma_{nn})$ and a symmetric and zero-diagonal matrix $\Gamma = [\gamma_{ij}]$.

Proposition

$U^*(r, \Sigma)$ is non-decreasing with Γ and is non-increasing with σ (for the partial order).
Comparative Statics: the role of r.

Proposition

k is monotone decreasing with r.

When coordination concern increases agents shift weight towards the focal point.

Proposition

U^* is monotone increasing with r whenever $\sigma_{ii} \geq \hat{\sigma}$ for all i, for some $\hat{\sigma}$.

Antoni Calvó-Armengol (ICREA-UAB) and Joan de Martí (UPF)

On Optimal Communication Networks
Proposition

Let \(\tilde{\rho} = \frac{2}{1+r} \rho \). The socially optimal action is

\[
a_i^S = (1 - k_i (\tilde{\rho})) \theta_0 + k_i (\tilde{\rho}) \mathbb{E}_i [\theta]
\]

We know that at equilibrium welfare increases with the coordination concern \(r \). The socially optimal action of agent \(i \) is equivalent to the equilibrium action of the game in which the coordination concern is larger: \(\tilde{\rho} = \frac{2r}{1+r} \).
We now analyze a particular kind of communication processes in which agents receive private signals that can communicate among them.

Individual Information

\[
\text{Prior} \quad : \quad \theta \sim N(\theta_0, \phi_\theta) \\
\text{Private} \quad : \quad x_i = \theta + \epsilon_i \quad \text{with} \quad \epsilon_i \sim N(0, \phi_\epsilon)
\]
The $\mathbb{P}^1 (g)$ Communication Process.

Network: g

\[g_{ij} = g_{ji} = 1 \text{ iff } i \text{ and } j \text{ talk}; \ g_{ii} = 1; \ g_i = g_{i1} + \cdots + g_{in} \]

The Process $\mathbb{P}^1 (g)$

- agents communicate their private signals and average them into a single communication outcome:

\[y_i^{\mathbb{P}} = \frac{1}{g_i} \sum_{j=1}^{n} g_{ij} x_j \]

- after this communication round the process stops
Let \(c_{ij}(g) = \# \{ k : g_{ik} g_{kj} = 1 \} \). This is the number of common information sources to \(i \) and \(j \).

Correlation of Reports

For the \(\mathbb{P}^1(g) \) communication process we obtain that

\[
\sigma_{ij}^{\mathbb{P}^1(g)} = \frac{c_{ij}(g)}{g_i g_j}
\]
Let $c_i(g) = \sum_{j=1}^{n} c_{ij}(g)$.

Span

If r small and α large, then welfare is increasing with

$$S(g) = \sum_i \frac{c_i(g)}{g_i}$$

For a given fixed supply of network links, welfare is maximal for an irregular network geometry (e.g., the star among trees, etc.)
Definition

\[\tau(g) = \text{number of closed triples in } g \]
\[\iota(g) = \text{number of open triples in } g \]

We say that \(g' \) is a closure of \(g \) when \(g \subseteq g' \) and \(g' \) has more closed triples and less open triples.
Proposition
If \(g' \) is a closure of \(g \) then \(k^P(g') \geq k^P(g) \).

Corollary
If \(g' \) is a closure of \(g \) then \(U(g') \geq U(g) \).
The Family $P^t(g)$ of Communication Processes

Agents communicate individual reports for t rounds, $t \geq 1$.

For any $1 < k \leq t$:

$$x_i^k = \frac{1}{g_i} \sum_{j=1}^{n} g_{ij} x_j^{k-1}$$

$y_i^{P^t(g)} = x_i^t$

When $t \rightarrow \infty$ the process $P^t(g)$ leads to:

- consensual beliefs
- weighted average of initial private signals (DeMarzo, Vayanos and Zwiebel, QJE 2003)

\Rightarrow For a given fixed supply of network links, welfare is maximal for a regular network geometry.
A Family of Networked Communication Processes

$r = 0.5$, $\alpha = 5$ and $t = 1, \ldots, 5$

\[
\begin{align*}
1 & \rightarrow 2 \\
1 & \rightarrow 3 \\
1 & \rightarrow 4 \\
\end{align*}
\]

kite

\[
\begin{align*}
1 & \rightarrow 2 \\
1 & \rightarrow 3 \\
1 & \rightarrow 4 \\
\end{align*}
\]

wheel

Structural Polarization as in Guimerà et al. (2002)