Policy with Dispersed Information

by George-Marios Angeletos and Alessandro Pavan

Discussion by Nikola Tarashev

Barcelona, June 15, 2007

The views expressed in this discussion need not represent those of the BIS.
Placing the paper in context

- The paper employs a framework with:
 - heterogeneous information
 - strategic complementarities \textit{(to consider a special case)} \[u_i = U(k_i, K, \sigma_k, \theta) \]
 - social aversion to non-fundamental volatility
 - social aversion to dispersion

- Inefficient use of available information
 - overreaction to public information
 - too much non-fundamental volatility relative to dispersion

- Growing literature on the welfare implications of public information:
Contribution of the paper

- Attack the inefficiency (in the use of information) directly!
- Confronted with …

\[k_i = \mathbb{E}[(1 - \alpha)\kappa(\theta) + \alpha K|\omega_i] \quad \text{where} \quad \alpha > \alpha^* \]

- … introduce taxes

\[u_i = U(k_i, K, \sigma_k, \theta) - T(\tilde{k}_i, \tilde{K}) \]

- … in order to align \(\alpha \) with \(\alpha^* \): \(T_{12} \) counteracting \(U_{12} \) & increasing in \((\alpha - \alpha^*) \)

- The optimal tax is implementable under additive noise in \(k_i \)
- The role of the tax is bigger in a dynamic setting with learning
- With the tax implemented: more information always improves welfare
A hidden pro-transparency argument?

- The effectiveness of the optimal tax rate is predicated on a clear-cut trade-off between (i) dispersion and (ii) non-fundamental volatility.

\[\kappa_i = E[(1 - \alpha)\kappa(\theta) + \alpha K|\omega_i] \]

- Needed: \(\omega_i \) containing pure private and public signals: \(x_i \) and \(y_i \). But:
 - \(x_i = \theta + \xi_i + \varepsilon^x \) Morris, Shin and Tong (2006)
 - \(y_i = \theta + \xi^y_i + \varepsilon \) literature on rational inattention

- Similarity between \(x \) and \(y \) reduces the welfare effect of taxes.

- A transparent authority could enhance the effectiveness of taxes by:
 - releasing information about a common bias in private assessments
 - leaving less room for idiosyncratic interpretation of its actions

Blinder (1998)
Limited scope of the policy proposal

- Suppose again that there is excessive non-fundamental volatility. **Paper’s prescription**: marginal tax is to increase in aggregate investment.

- Suppose, however, that asset supply is inelastic:
 - The price adjusts:
 - it is common knowledge (actions can be conditioned on it)
 - this effectively rules out strategic interactions
 - Non-fundamental volatility (of the price) might be excessive, depending on social preferences
 - A tax that reflects aggregate investment cannot correct for this (trivially)
 - An optimal tax (reacting to the price level):
 - cannot influence individual players’ weights on public information (no hidden aggregate action matters to players)
 - needs to incorporate knowledge of the public signal

- Analysis would be more convincing if it adopted a GE approach.
Applicability limitations

- The paper demonstrated that the optimal tax is implementable even under imperfect knowledge of private actions

\[\tilde{k}_i = k_i + \eta + \nu_i \]

- Assumptions that noise is additive, zero mean, independent of all other shocks to the economy: probably too strong in general.

- In addition, there are increasingly important special cases
 - Unregulated investors (e.g. hedge funds) whose investment positions are simply unknown
 - Given the status quo, it seems unrealistic to expect that hedge funds would disclose positions which will be taxed.
Related policy arguments

- **Macro-prudential dimension of financial stability**
 - Capital to depend not on portfolio risk per se but on contribution of portfolio to systemic risk

- **Policy proposal to correct for inefficient use of information**
 - Tax to depend on individual investment and aggregate market volume

- **Conceptual issue**: real time knowledge of potentially unstable parameters
- **Practical issue**: players view themselves as separate entities and see a violation of the level playing field condition