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MANAGING TECHNOLOGY DEVELOPMENT FOR 
SAFETY-CRITICAL SYSTEMS

Abstract

This paper presents a model that determines the optimal budget allocation strategy
for the development of new technologies for safety-critical systems over multiple decision
periods. The case of the development of a hypersonic passenger airplane is used as an
illustration. 

The model takes into account both the probability of technology development
success as a function of the allocated budget, and the probability of operational performance
of the final system. It assumes that the strategy is to consider (and possibly fund) several
approaches to the development of each technology to maximize the probability of
development success. The model thus decomposes the system’s development process into
multiple technology development modules (one for each technology needed), each involving
a number of alternative projects. There is a tradeoff between development speed and
operational reliability when the budget must be allocated among alternative technology
projects with different probabilities of development success and operational reliability (e.g.,
an easily and quickly developed technology may have little robustness). The probabilities of
development and operational failures are balanced by a risk analysis approach which allows
the decision maker to optimize the budget allocation among different projects in the
development program at the beginning of each budget period. 

The model indicates that by considering reliability in the R&D management process,
the decision maker can make better decisions, optimizing the balance between development
time, cost, and robustness of safety-critical systems. 

Key words: technology development, system reliability, risk analysis, failure risk, project
management, program management optimization, time to market



MANAGING TECHNOLOGY DEVELOPMENT FOR 
SAFETY-CRITICAL SYSTEMS

1. Introduction

The development of advanced, safety-critical engineering systems requires meeting
stringent goals of technological robustness, schedule and budget. An additional layer of
complexity is added when the underlying technologies of the system to be built have not been
developed yet. This is a common situation, for example, in the aerospace industry or in the
energy sector, where project development often takes months or years. The availability of the
technologies under development is crucial to the operational success (and the level of
robustness) of the engineering system, but development success is uncertain. As a result,
changes can occur late in the development stage and significantly increase the program costs.

A company undertaking this kind of development may face a tradeoff between
investing in the most promising technology in terms of system robustness, and the most
promising technology in terms of system realization. Modifying a readily available
technology on the one hand may increase the probability of development success, but on the
other may yield a technology of relatively lower robustness or safety. 

In discussions with managers in the aerospace industry, we found that they often
handle this tradeoff intuitively for lack of appropriate analytic tools. The goal of this paper is
to provide a tool that will guide the budget allocation process by allowing the company
undertaking the development effort to balance these two considerations. For example, how
should a company that is developing a hypersonic passenger airplane face the tradeoff
between funding technology development projects with a low probability of operational
success (i.e., this technology is more likely to fail during operation than other technologies)
but a high probability of development success (i.e., reduced time-to-market) – and a
technology project with opposite characteristics? 

The problem of resource allocation and project selection in R&D is similar to other
selection and allocation problems. Yet, because it involves engineering performance, it is
different enough to warrant a separate treatment here. Teisberg [1995] distinguishes three
methods for evaluating strategic investment decisions: dynamic discounted cash flow
analysis, decision analysis, and option valuation. The latter has received increased attention
since 1994, for example in the works of Dixit and Pindyck [1994], Smith and Nau, [1995],
Trigeorgis [1996], Schwartz and Moon [1996], Childs and Triantis [1999] and Shishko and
Ebbeler [1999]. We feel, however, that real options are not applicable in the problem under
investigation as no twin asset is identifiable. Teisberg goes on to state that in situations where
no market information is available or where the available market data are not relevant,
decision analysis may be a more appropriate decision aid. Other authors, e.g., Shishko and
Ebbeler [1999], have drawn the same conclusion.



The literature in economics and finance that deals with R&D generally does so in
the context of competition or value of the firm. This literature frequently derives estimates of
technical failure risks from economic or market data, bypassing the knowledge available in
the firm itself. A taxonomy of the project selection problem in the economics literature can
be found in the work of Ali, Kalwani and Koevenock [1993]. Some of the main
considerations are time-to-market, first-mover advantage and industry dynamics, as
developed for instance by Aoki [1991] (when do technology followers drop out?), or in a
more general context, the value of R&D to society, as in the work of Nelson [1959]. Nelson
[1961] also showed that “parallel development of alternative designs seems called for when
the technical advances sought are large”. Jensen [1987] analyzes the pharmaceutical industry
and finds a positive relationship between a firm’s research and development intensity and its
probability of discovering a new drug. The same applies in the research presented here. The
difference is that we focus on the robustness of an engineering system before its operation,
using technical information that may not be available to the market at that stage, and risk
analysis models that are not always developed by the firm. 

The literature in engineering approaches the problem from the inside, i.e., instead of
measuring the uncertainty inherent in the development of new technology based on economic
data, technical knowledge available in the company is used. A taxonomy of the R&D project
selection problem in the realm of applied engineering is provided by Martino [1995].
Balachandra and Friar [1997] provide a review of the literature that deals with critical factors
in R&D in a large number of projects. Booker and Bryson [1985] provide an extensive
compilation of the literature about decision analysis in project management. Liberatore and
Titus [1983] look at the use of management science in R&D project selection but without
explicit consideration of expected technical performance. Schmidt and Freeland [1992]
review the progress that has been made in the development of quantitative models for R&D
project-selection processes. They find that there has been a mismatch between modeling
efforts and modeling needs, and state that more interaction is needed between researchers and
practitioners. They argue for more research that takes a systems approach to the R&D project
selection task, which is one of the goals of the work presented here. 

The engineering literature that explicitly addresses management of R&D projects
generally deals with the management of development uncertainty. Derman, Lieberman and
Ross [1976] address the question of optimal budget allocation for an n-stage development
process where several components have to be developed successfully, development success is
a continuous non-decreasing function of allocated budget, and a penalty is paid for each
undeveloped element. A similar problem is investigated by Chun [1994], but while Derman
et al. focus on sequential development, Chun also looks at parallel development. The author
presents an ordering parameter that indicates which projects to undertake in which period.
More recently, Dillon and Paté-Cornell [2001] have developed an Advanced Programmatic
Risk Analysis Model (APRAM), balancing development risk and technical failure risk but
without explicit consideration of alternatives for each of the technologies necessary. 

Using probability distributions for safety parameters and addressing questions of
optimal configuration or sequencing, the publications listed above either involve the
technological uncertainty present in R&D project management (be it from an economic or an
engineering perspective), or the robustness of systems. To the best of our knowledge, no
attempt has been made so far to include both the probability of operational success (or
technical failure) and the choice of development alternatives in the R&D project selection for
funding over time. That is the question that is addressed further in this paper. 
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Section 2 of this paper presents a formulation of our model. Section 3 provides an
illustrative example from the aeronautic industry and analyzes the investment results for
different program funding profiles. We conclude in section 4 that the optimal project
allocation depends on technical characteristics, development uncertainties, and performance
linkages among projects. The appendix contains proofs and formal results. 

2. The Model

Our model represents the decision problem of a manufacturing company that aims to
develop and build a complex engineering system Sys which will include a number N of yet-
to-be-developed technologies. If all necessary technologies are developed successfully, the
decision maker can build and operate system Sys. The non-availability of any of these
technologies will result in development failure for the system Sys. 

2.1. Notation

• i Index of technology module, i ∈ [1,2,..., N].

• j Index of technology development project, j ∈ [1,2,..., mi].

• N Number of technologies under development, therefore of technology
development modules.

• mi Number of projects available for development of technology i.

• M = ∑i
N mi Total number of technology development projects under

consideration for development of system Sys.

• t Current time period (e.g., year).

• T Number of time periods available for development of system Sys.

• Bt ≤ 1 Budget available for time period t (as a fraction of the maximum annual
budget over time). Bt is discounted to period t=1.

• xi,j,t Budget allocated to project j of module i for period t. For each period
t, the sum of all xi,j,t is less than or equal to the available budget Bt of
that period, and xi,j,t ≥ 0 ∀(i,j,t).

• Xt Budget allocation vector for period t. Xt = {x1,1,t,...,xN,mN,t}.

• Ii,j Project state indicator for project (i,j). This indicator is equal to one if
project (i,j) has been developed successfully at a considered time t (e.g., at the
end of N periods), and zero otherwise. We omit index t to improve readability.

• ISys System development state indicator. This indicator is equal to one if system
Sys can be built at a considered time t (e.g., the end of N periods), and zero
otherwise. We omit index t to improve readability.
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• IDev(t) Development state vector of system Sys at start of period t, indicating
which projects have been successfully developed so far. IDev(t) = {I1,1, ...,
IN,mN}

• S(IDev(t)) Set of all possible development states for system Sys at the end of
period t, given that Sys is in development state IDev(t) at start of period t. The
actual development state vector U ∈ S(IDev(t)) represents one of these possible
outcomes.

• di,j(xi,j,t) = 1 – e–a
i,j

x
i,j,t Probability of development success for project j of

module i in period t as a function of the allocated budget xi,j,t (budget-
probability function).

• ai,j Parameter of the budget-probability function. The larger the value of ai,j, the
larger the probability of development success for a given budget xi,j,t. ai,j ≥ 1
∀(i,j).

• ri,j Probability of operating success of subsystem i in system Sys based on the
technology developed in project j of module i. 0 < ri,j < 1.

• ROS Reward (value function) of successful completion of the development
program followed by successful operation of system Sys. ROS > 0.

• ROF Reward (value function) of successful completion of the development
program followed by failure of system Sys in operations. ROS > ROF. Note that
ROF can be positive or negative (there may be some positive value to lessons
learned).

• RDF Reward (value function) of failure of the development program, i.e.,
system Sys cannot be built. ROS > ROF > RDF.

• ϕ(U|IDev(t), Xt) Probability of reaching development state U of the set of all
possible development states S at the end of period t given the development
program’s state vector IDev(t) at the beginning of period t and the budget
allocation vector Xt

• Φ(IDev(t)) Probability of successful system operation given the development
state IDev(t) of the program at start of period t, assuming that the system is built
based on the best technologies available at that time.

• Kt(IDev(t),Xt) Expected value of the net reward function for stopping
development at start of period t, given development state IDev(t) and budget
allocation vector Xt of development program.

• Lt(IDev(t),Xt) Expected value of the reward function for continuing
development at start of period t, given development state IDev(t) and budget
allocation vector Xt of development program.

• Vt(IDev(t),Xt) Expected value function for period t, given development state
IDev(t) and budget allocation vector Xt of the development program at the
beginning of period t.
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2.2 Model Formulation

The company has at its disposal a total of t ≤ T time periods of equal length (e.g., T
years) during which it can develop the necessary technologies and build the system Sys.
After successful development the system will be operated during a number of periods. It is
assumed here that the first period of operation alone represents proof that the system will
work during operation. Each of the N technologies (indexed in i) has a number mi of different
project alternatives available for its development. The total number of projects M available at
any time is equal to the sum M=∑i=1

N mi. If at least one project j(i) for each technology i is
successfully developed, system Sys can be built. The development projects under
consideration for funding can be arranged in a block diagram as shown in Figure 1. In this
Figure, each module of projects in parallel represents a number mi of projects j that aim to
develop the same technology i using different approaches, for example, a Diesel engine
versus an Otto engine for propulsion, or a vacuum tube versus a semiconductor for electronic
switches. 

Figure 1: Development Block Diagram

The next question is whether system Sys is robust enough given the available
technologies in each module. The probability Φ of operational success of system Sys during a
given time period (e.g., first year of operation) can be calculated using Probabilistic Risk
Analysis (PRA) as a function of the probabilities of operational success of the system’s
components. For ease of calculation we assume that system Sys is a single-string system
consisting of N subsystems (or components) in series. Each of these subsystems will be based
on exactly one of the newly developed technologies. 

The next question is how an increase in the amount of development funds for each
project increases its probability of development success. 

Let Bt be the development budget available for period t. Budgets Bt are expressed in
monetary values discounted at the initial period t=0, normalized as a proportion of the largest
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(discounted) budget Bτ over time; therefore Bτ=1.0 and 0 ≤ Bt ≤ Bτ for all other budgets Bt.3
It is assumed that budgets Bt cannot be saved (ie., no delayed consumption). 

Let xi,j,t be the percentage of the development budget Bt that is allocated to a project j
aimed at developing technology i during period t. The xi,j,t are allocated so that xi,j,t ≥ 0 with
∑i,jxi,j,t ≤ Bt. All project’s xi,j,t are grouped in the allocation vector X(t) = {x1,1,t, x1,2,t,...,xN,nN,t}. 

Each project’s probability of development success in a given time period t is
represented by a probability di,j,t(xi,j,t). Assume that this relationship is time invariant (for a
given investment during period t, the probability of success does not increase or decrease
with past experience) and that it can be represented by an exponential function of the form: 

(1)

This assumption is reasonable as it implies that the larger ai,j, the larger the
probability of development success for project (i,j) for a given budget xi,j,t, with a decreasing
marginal return of the investment xi,j,t in terms of increase in the probability di,j,t of
development success. 

The development state of project j in module i can be described by an indicator
variable Ii,j (0 if unsuccessful, 1 otherwise). These indicator variables can be arranged in a
development state vector IDev(t) = {I1,1,t,..., Ik,l,t, ..., IN,mN,t} which represents the state of
system development at the start of period t. Given the development state vector IDev, we
define S(IDev) as the set of development state vectors U that spans all possible outcomes of
the development efforts during period t. At the start of period t, the development state vector
IDev(t) contains k ≥ 0 indicator variables with Ii,j=0, i.e., the technology development program
contains k undeveloped projects. At the end of the initial period, any of those projects may
have been successfully developed. Therefore, the set S(IDev) contains 2k different
development state vectors U. If, during period t, no project is successfully developed, then
U=IDev(t), and therefore, IDev(t+1) = U = IDev(t). 

There are three different rewards R that can be realized during any development
period, assuming that system Sys is built (or not) based on technologies developed so far:
ROS > 0 is the reward for successful development and operation of the system. ROF < ROS is
the reward for successful development of the system followed by failure during operation.4
RDF < ROS is the reward for an unsuccessful development program.5 While ROS is always
positive, both ROF and RDF can be negative. We assume here that the reward for successfully
developing system Sys but not building it is zero and larger than RDF. All rewards R are
discounted to period t=0 and are expressed as multiples (or fractions) of the largest
discounted development budget Bτ*. Finally, we assume that the expected reward for
developing system Sys, given that system Sys has not been developed so far, is always larger
than the reward for development failure, RDF. We also assume that the expected reward for
building system Sys, given its successful development represented by development state IDev,
is always larger than the expected reward for not building system Sys, given development
state IDev.

Let ri,j be the probability of operational success (and 1–ri,j the probability of
operational failure), during the time period under consideration, of any subsystem based on
the technology developed in project j of module i. We assume that this probability is
determined by the physical characteristics of the technological approach, which in turn can be
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assessed through engineering models, statistics or expert opinions based on experience of
similar components in other environments, even before the development program is initiated.
For instance, the Diesel engine may be assessed to be more reliable than the Otto engine, and
the transistor may be assessed to be more reliable than the vacuum tube. 

We assume that system Sys is a single-string system, i.e., it will have exactly N
subsystems i in series, each based on one realization of its corresponding technology i.
Assuming independence of technical performance of the different subsystems, the optimal
choice is, among all available alternatives for technology i, that which has the lowest
probability of technical failure.  The probability Φ(IDev(t)) of successful operation of system
Sys (after a successful development stage) can thus be calculated by multiplying the largest
probability of operational success ri,j of all successfully developed projects in each module. 

(2)

The sum ∑w = t
T Bw represents the R&D budget that is saved by stopping

development efforts at the beginning of period t and building (or not building) system Sys at
that point. Once the N technologies have been developed successfully, the rational decision
maker builds system Sys if the expected value of the rewards of operating the system
EVoperation exceeds that of not building the system. This reward is:

(3)

As a result of Equation 3, we can define a lower bound of the probability of
operational success Φ for system Sys. Below this value, the rational decision maker will
choose not to build the system because the expected costs of failure during operation
outweigh the benefits. This lower bound is:

(4)

At the beginning of each period t, the decision maker wants to maximize his value
function Vt. To do so, he has to choose between stopping development and realizing reward
Kt, or continuing development and realizing reward Lt. The (simplified) optimal value
function at that point is thus obtained as:

(5)

subject to the constraints: 

(6)
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Focusing now on the computation of Kt and Lt, consider the indicator ISys(t)
(Equation 7), which is equal to zero if the system development has been unsuccessful by the
start of period t and one otherwise (i.e., at least one option has been successfully developed
for each technology).

(7)

The expected reward Kt(IDev(t)) for stopping development at start of period t is a
function of the development state indicator ISys(t). If system development has been
unsuccessful so far (i.e., ISys(t) = 0), the decision maker can earn the expected reward RDF and
save the remaining development budgets Bt. If system development has been successful
(ISys=1), he can earn the expected reward of operating the system and save the remaining
development budgets Bt. This result is shown in Equation (8), where the probability
Φ(IDev(t)) of operational success for system Sys is provided by Equation (2). 

(8)

The expected reward for continuing development Lt(IDev(t)) requires evaluation of
the value function Vt+1(U) for each possible development outcome U multiplied by its
probability ϕ(U|IDev(t), Xt). We compute the probability of each outcome U by explicitly
multiplying the probabilities of successful and unsuccessful development outcomes, as
shown in Equation (9), for all projects (i,j) given their development state indicators Ii,j(U). 

(9)

Using Equation (9), we can formulate the probability ϕ(U|IDev(t), Xt) of development
outcome U, given initial development state IDev(t) and budget allocation vector Xt as shown
in Equation (10).6 In this equation, the only projects (i,j) considered for funding are those that
have not yet been successfully developed by the start of period t, i.e., projects j such that j:
Ii,j(IDev(t))=0. 

(10)

If he chooses to continue development, the decision maker wants to allocate budget
Bt so as to maximize the expected reward Lt(IDev(t), Xt). Therefore, he has to find the
(optimal) budget allocation vector Xt*. The corresponding optimization problem is thus:

(11)
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Finally, the reward (value) function at the end of the last period t=T (beginning of
T+1) is the expected value of operating the system if the development has been successful
and the system indicator ISys(T+1)=1. If development has not been successful and
ISys(T+1)=0, the value function at the end of the last period is RDF which can be computed
from the following equation:

(12)

Equations 5 to 12 represent the decision support model that is at the core of this
paper. 

2.3 Development

To provide a benchmark, we first consider the problem where the developer wants to
develop system Sys within T time periods and is not concerned about the probability of
operational success of the system developed. We refer to this as a “development first”
strategy, as opposed to a “robustness first” strategy, where the decision maker is mostly
concerned about the probability of operational success of the system Sys to be developed. A
funding strategy is a sequence of budget allocation vectors (one for each period), where each
budget allocation vector depends on the state of the development program at the beginning of
the corresponding budget period. In the case of a “development first” strategy, the decision
maker would focus only on the probability of development success dij of each project (i,j)
(determined by parameter ai,j) and disregard the probability of operational success ri,j. Lemma
1 describes the solution structure of this basic problem.7

Lemma 1 For the development-only allocation problem the decision maker will
fund at most one project j* in each development module i where j* = maxj {ai,j}.

This result may not be intuitive because it proposes an “all-eggs-in-one-basket”
strategy for each technology module. This result comes from the assumption of an
exponential relationship between the allocated budget xi,j,t and the probability of development
success di,j(xi,j,t). 

The multi-stage decision problem in this setting can be formulated as follows: given
development state IDev(t) at the beginning of period t, the decision maker can either stop
development and realize a reward Kt(IDev(t)), or he can decide to continue the technology
development and realize a reward Lt(IDev,X(t)) by allocating the period’s budget Bt among the
projects according to the budget allocation vector X(t). Since we assume that the developed
system’s probability of operational success is always larger than the threshold value defined
in Equation (4), the decision maker will always build and operate the system once he
completes the development program successfully. 

Under the “development first” strategy in period t, let outcome U* be the one where
all funded projects meet with success and accordingly ISys=1 with V*t+1(U*)=Lt(U*,Xt*), as
calculated in Equation (11) (with Φ as given in Equation (2)). 

Because of the discounting, the value function Vt+1(U) for reaching development
outcome U in period t+1 is less than the value function Vt(U) for reaching the same
development state one (or more) period(s) earlier, as shown in Equation (13).8
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(13)

As a result of Equation (13) and Lemma 1, during each period t and under the
“development first” strategy, the decision maker will fund at most one project j* per
technology module i, namely the project with the largest parameter ai,j* = maxj {ai,j} in that
module. Using this result, we can now formulate the optimization problem for the
“development first” strategy decision problem. 

The decision problem is reduced to finding a budget allocation vector Xt* that
maximizes the probability ϕ(U*|IDev(t), Xt) that all funded projects are successful. The
corresponding optimization problem is given in Equation (14): 

(14)

Subject to the constraints: 

(15)

With: 

(16)

2.3.1 Solution Behavior

Next, we analyze the behavior of the solution for the “development first” strategy.
The objective function of the nonlinear programming problem given in Equation (14) is not
necessarily pseudo-concave, which means that a local optimum X*t is necessary, but not
sufficient for a global optimum.9 However, the optimization problem of Equation (14) can be
transformed into an optimization problem with a strictly concave objective function (over its
domain) by applying a log-transform to ϕ(U*|IDev,X).10 The transformed optimization
problem is given in Equation (17). 

(17)

subject to the constraints: 

(18)

Each term of the objective function in Equation (17) is strictly concave and that
equation is defined over a convex set.11 Therefore, the Karush-Kuhn-Tucker conditions are
both necessary and sufficient for a global optimum. Accordingly, any converging numeric
algorithm (e.g., quasi-Newton) will yield a global optimum for Equation (17). Since we
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assume that the decision maker is rational in his choice, and therefore that the probability of
operational success Φ is larger than the limit given in Equation (4), we can identify a globally
optimal strategy. The decision maker will maximize Vt(IDev(t)) in each period if budget Bt is
allocated so that the Karush-Kuhn-Tucker solution to Equation (17), given in Equation (19),
holds. 

(19)

The available budget Bt for each period t is allocated so that at most one project per
technology module is funded. If, in module i, project j* corresponding to maxj ai,j has already
been developed successfully by the start of period t, module i receives no funding. Otherwise,
only project j* of module i receives funding. The available budget Bt is allocated among the
chosen projects according to Equation (19). Since the structure of the “robustness first”
allocation problem is identical to the “development first” allocation problem (assuming that
at least one development will be successful for each technology), the solution characteristics
presented in the former case also apply to the latter (replacing j*: maxj ai,j by j*: maxj ri,j).
Again, these characteristics are a consequence of the choice of an exponential function that
we made to model the relationship between allocated budget and probability of development
success of a project. 

2.4 Development and Robustness

We now consider the situation where the decision maker allocates the budget for
developing system Sys within T time periods, taking into account the probability of
development success di,j(xi,j,t) as well as the probability of operational success ri,j of each
development project j of technology i. In this case, the decision maker can trade-off the
probability of achieving development success within the given time horizon and the
probability of operational success. We refer to this as a “mixed” strategy. 

In what follows, we assume that there is no dominance among projects of one
technology module, i.e., any ordering ri,j < ri,l implies ai,j > ai,l. If there were a dominated
project k in module i, i.e., a project k such that ai,j > ai,k and ri,j > ri,k, then because of the
exponential shape of di,j and di,k, project (i,j) would always be preferred over project (i,k) and
the latter would never be funded. It could be dropped from the portfolio of available projects
and would not be considered. 

In this setting, the decision maker may choose to continue development even though
he already has one successful development project for each technology (i.e., ISys=1). This is
the case if the value to be gained by seeking development of a system with higher probability
of operational success is greater than that of operating the system based on the currently
developed projects. The mathematical formulation for this decision problem is given by
Equations (2) through (12). Unlike in the development-only problem, we cannot formulate a
closed-form solution here because, in general, the objective function cannot be proved to be
pseudo-concave. This complicates the task of finding the optimal budget allocation vector X*
and we have to resort to numerical methods to do so. This approach will only allow finding
local optima and one can never be certain that the identified solution is a global optimum.
However, by using upper and lower bounds, one can establish whether a solution is a “good”
solution or not. 
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3. Illustrative Example

To illustrate our model, consider the hypothetical example of the development of a
High-Speed Civil Transport plane (HSCT) as representative of a complex and safety-critical
engineering system. All data used here are hypothetical. 

The only supersonic commercial plane in service, the Concorde, does not meet
present environmental standards regarding noise and emissions. Furthermore, its limited
capacity makes it difficult to operate the plane profitably. Furthermore, the accident that
occurred in Paris in July 2000 makes the availability of this vehicle for future service
questionable. Any successor to the Concorde must address safety and environmental issues in
a satisfactory manner. Significant progress has to be made in many areas of aerospace
technology to achieve these goals. The following areas of technology development needs
have been identified by Marvis, Bandte and Brewer [1995]: 

• Aerodynamics: The lift-to-drag ratio is one of the most important parameters of
large commercial aircraft because it has a significant effect on all fuel-related
performance (e.g., fuel consumption and maximum range). This ratio decreases
significantly at supersonic speeds, resulting in decreased fuel efficiency.
Because the HSCT will operate in subsonic as well as supersonic velocity
ranges, there is no simple solution to this challenge. To be successful, the
HSCT will have to have better cruise efficiency than the Concorde, and must
produce higher lift at lower airspeeds to reduce noise reduction (i.e., less
reliance on engine thrust for lift).

• Airframe: The HSCT has to operate at high altitudes, leading to increased
pressure differentials between the cabin and the external environment.
Additionally, the main structure of the cabin will be exposed to larger
temperature variations (several hundred degrees Fahrenheit) as well as
increased radiation from space. Finally, to be economically viable, the plane
will have to reach a high level of utilization and safety (i.e., low turn-around
time, many passenger miles and system robustness) to be as profitable as
subsonic commercial planes, which results in increased loads on the airframe.

• Propulsion: The HSCT must be powered by fuel-efficient and lightweight
engines that meet particle- and noise-emission standards while consuming less
fuel than the engines of the Concorde. Since the HSCT will also travel at
subsonic speeds during descent, engineers will have to balance the conflicting
needs of subsonic and supersonic design principles. Combustors will reduce
emissions while ensuring long life, new nozzle concepts will reduce noise and
weight, material advances will increase the life of turbine blades, and mixed
compression inlets will allow stable and efficient operation of the jets over the
range of flight speeds.

In our model illustration, we focus on the propulsion sub-system because it is one of
the most complex. In particular, we choose, as an example, the development of sound
emission reduction technologies and turbo-machinery materials. For each of these
development challenges (i.e., technology modules), more than one approach (i.e.,
development project) are possible. 

The decision maker is faced with the problem of developing the propulsion
technology within the given time limits and within the allocated budgets. The problem’s
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development block diagram is shown in Figure 2. We assume here that the decision maker is
interested in finding the strategy that will maximize his expected revenue for the beginning of
the first operating period, subject to budget and time constraints. Again, we assume that the
system’s performance in the first period of operation after successful development is
representative of its robustness in the long run. During each subsequent time period, the
decision maker can solve the allocation problem again and, in doing so, incorporate any
additional information he might have gathered.

Figure 2. Development block diagram for HSCT propulsion

For each of the four technology development projects shown in Figure 2, experts
involved in the project have to be identified to assess, based on their experience, the
probability of development and the probability of failure in operations. In a structured
interview process, the probabilistic risk analysis (PRA) expert has to elicit the information
about the relationship between the portion of the budget allocated to that project’s
development and its probability of successful development by the end of the period (we
assume that clear definitions of what constitutes “successful development” are available
during the elicitation process). In a separate step, the experts have to elicit the probabilities of
operational success ri,j (i.e., robustness, or conversely of the probability of failure) for each
technology I resulting from a development project (I, j). 

Once these data have been gathered, one can fit a curve that represents the
relationship between allocated development budget and probability of development success.
In this case, we used an exponential curve to fit the data points and the following
hypothetical data for the model: 

• Budgets: All periods t have the same budget. Therefore, Bt = Bτ = 1.0 (values
discounted to the start of the first period).

• Development Success: The elicited data and the parameters ai,j of the fitted
exponential functions linking budget allocation xi,j,t and probability of
development success di,j,t are assumed to be: 

* a1,1 = 3.5 
* a1,2 = 7.0 
* a2,1 = 5.0 
* a2,2 = 8.0
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• Operational Success: The Bernoulli variables for the probability of successful
operation of each subsystem i, based on development project j of technology
module i, are: 

* r1,1 = 0.85 
* r1,2 = 0.80 
* r2,1 = 0.95 
* r2,2 = 0.80

• Costs and rewards: The values for the different outcomes are (expressed in
present values discounted to the start of period 0)13

* ROS =  10.0 for development success and subsequent operation without 
failure. 

* ROF = –15.0 for development success and subsequent failure during 
operation. 

* RDF =  –1.0 for unsuccessful development.

3.1 Analysis

Without analysis, the decision maker could either follow a “development first”
strategy emphasizing development success by time T, or a “robustness first” strategy,
focusing on the development of the projects that yield the highest probability of operational
success in each technology module. The findings of section 2.3 apply to both of these
strategies. 

The simplest case would be that of one development period, i.e., T=1. Figure 3
shows a simplified decision tree for this case. 

Figure 3: Simplified decision tree for building system Sys within one time period given 
development state U at the start of that period 
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The optimal budget allocations for the development strategy alone and the
robustness strategy alone require computation of the value function in both cases. The results
are: Vt=1, development=0.91 and Vt=1, robustness=3.73. The corresponding budget allocations are
X1*={0.000, 0.525, 0.000, 0.475} and X1*={0.552, 0.000, 0.448, 0.000}, respectively.14 The
solution vector X* of both strategies are given by the closed form solution provided by
Equation (19). In one case the projects with the largest parameter ai,j in each module are
funded, while in the other case the projects with the largest parameter ri,j in each module are
funded. 

However, if the decision maker takes into account both development and operational
aspects (see section 2.4), he finds a solution that yields an even higher expected value:
Vt=1=3.91 with X1*={0.318, 0.205,0.477, 0.000}. The budget allocation vector shows that in
this case neither a “development first”, nor a “robustness first” strategy can be identified.
Instead, in technology module i=1, both projects are funded and a “mixed” strategy is used.
The reason for this is that both projects have a relatively low probability of operational
success, while their parameters ai,j differ significantly. In module 2, only one project is funded
during the first period, i.e., the project with the larger probability of operational success r2,1.

Now we assume that the decision maker has two periods to develop the necessary
technologies. Again, we calculated the value functions, for the initial period, and for both
“development first” and “robustness first” strategies. The results are, respectively, Vt=1=1.95
with X1*={0.000, 0.525,0.000, 0.475} and Vt=1=5.90 with X1*={0.561,0.000, 0.439, 0.000}
(due to Bellman’s principle of optimality the budget allocation vectors X2 for the second
period are identical to the ones found earlier for the one-period problem). Clearly, the
“robustness first” strategy produces better results. 

If the decision maker takes both development and operational aspects into account,
the value function for the initial budgeting period is Vt=1=5.91 and the budget allocation
vector is X1*={0.557, 0.000, 0.443, 0.000}. The difference between the “robustness first” and
the “mixed” strategy has decreased. 

For a time horizon of T=10 the difference between the “robustness first” and the
“mixed” strategy has disappeared for all practical purposes: both strategies produce
Vt=1=13.94 with X1*={0.553,0.000, 0.447, 0.000}. This is true because during periods one
through nine, both the mixed and the robustness-first strategies result in identical budget
allocations. Only for the very last period T do they differ. This difference disappears in
practice when the values are discounted to period t=1. 

These results show that for multi-period decision problems with long time horizons
(T >> 1), the decision maker should always choose the “operation first” strategy. Only as he
approaches the time horizon T should he switch to a “mixed” strategy that takes both the
probability of operational success and the probability of development success into account.
Finally, the numerical results also underline the opportunity cost of going for a “quick finish”
instead of a high-robustness system. 

4. Conclusions

In this paper, we analyzed a budget allocation problem that occurs when tradeoffs
between probability of development success and probability of operational success (or safety)
of engineering systems under development have to be made. The decision maker has a
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limited development horizon and needs to achieve development success and a high safety
system by that time. We found several interesting results in the results of the model. 

First, in the benchmark case of a “development first” approach to R&D (i.e., the
decision maker is only concerned with achieving development success as early as possible)
an “all eggs in one basket” strategy dominates. The decision maker will fund at most one
project per technology module i and the funded project j* will be the one with the largest
parameter ai,j in that module. The same result applies to the “robustness first” strategy, where
projects j* with the largest parameter ri,j in each module i will be funded. This is counter-
intuitive and stands in contrast to previous empirical findings, e.g., Nelson [1961]. It can be
explained in part by the decreasing marginal returns characterizing the relationship between
the allocated budget and the probability of development success. 

Second, when taking into account both the probability of development success and
the probability of operational success in the decision process, budget allocation strategies
change over time. For the single-period budget allocation problem, the decision maker will
allocate funds in a manner that will generally differ from both the “robustness first” and
“development first” strategy. As the number of budgeting periods increases, the budget
allocation for the initial period t=1 will converge to a “robustness first” strategy, which
coincides with general intuition. 

Finally, when comparing the results obtained from the two allocation models, we
showed that in taking the probability of operational success (or safety) into account from the
beginning, the decision maker may save time and money, and obtain a better system sooner. 

5. Appendix

5.1 Proof of Dominance

We show here that if in any module i, there is a project such that ai,k > ai,l and ri,k >
ri,l for all l > k, then all projects {l: l=k+1, k+2, ..., nm} can be removed from the budgeting
process. 

There exists an ordering for each technology development module i so that ri,k >
ri,k+1 for all k with 1 ≤ k ≤ ni. Because of the strictly increasing budget probability function
di,j,t(ai,j, xi,j,t) any project (j+k) in module i with

ri,j > ri,j+k and   ai,j > ai,j+k (20)

is dominated by project (i,j) and can be removed from the set of development projects. 

Due to the ordering ri,(j) we know that ri,k–1 > ri,k. The corresponding parameter ai,k
can be either smaller, equal to or larger than ai,k–1. If it is smaller than or equal to ai,k–1, project
(i,k) is dominated by project (i,k–1) and can be removed from the set. Therefore, for all
projects 1 ≤ j ≤ (ni–1) in module i, ai,j < ai,j+1. The ordering of the ai,k is thus the reverse of the
ordering of the ri,(j), where ri,(l) is the ordering of ri,l in decreasing size. 

This concludes the proof. 
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5.2 Proof of Lemma 1 

We show here that for the case where the probability of development success di,j,t
has an exponential form, the decision maker will fund at most one project per development
module. 

Let di,j = 1–e–a
i,j

x
i,j. Let PD(i) be the probability ΦD successful development of at least

one project in module i, with 

(21)

which can be rearranged as: 

(22)

With: 

(23)

The expression above reaches its maximum for xi,k,t=Bt with {k: ai,k = Maxj(ai,j)}. 

This concludes the proof. 

5.3 Proof of Karush-Kuhn-Tucker for the One Module Model

We show here that the objective function is concave, defined over a convex set.
Therefore, the Karush-Kuhn-Tucker conditions are both necessary and sufficient for a global
optimum. 

We assume that ri ≥ ri+1 for all i and we define Rk = rkROS+(1–rk)ROF as the expected
reward for operating system Sys, using the technology developed by project k. Further, we
assume a rational development program where the rewards for developing and operating a
system that does not exist are larger than those for not doing so. In particular, the reward for
successful technology development followed by successful operation is larger than the
reward for successful development alone (i.e., the system is developed but not built), which is
larger than the reward for development failure: ROS ≥ RDS ≥ RDF. Finally, we assume that the
expected reward for developing and operating system Sys is larger than the reward for
developing and not operating system Sys: Φ(IDev(t))(ROS-ROF) + ROF ≥ RDS. 

Equation (24) formulates the optimization problem for the one module case. The
three terms on the right side represent the expected reward for the case that project one is
successful, that project two (three, four,..., n-1) is the first successful project and that no
development project is successful, respectively.
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(24)

subject to the following constraints 

(25)

(26)

With: 

(27)

Using Equations (27), the objective function Vt(IDev(t), Xt) in Equation (24) can be
rearranged as follows: 

(28)

Each term on the right side of Equation (28) is concave, since (Ri - Ri+1) ≥ 0 for all
projects I and all factors -ef(x) are concave. Thus, Vt(IDev(t), Xt) is a summation of concave
functions. Since the concave objective function (28) is defined over the convex set (25), the
Karush-Kuhn-Tucker conditions are both necessary and sufficient for global optimality
(Bazaraa, Sherali and Shetty [1993]).

This concludes the proof. 

5.4 Proof of Karush-Kuhn-Tucker Solution for Multiple Development Modules

We show here that the objective function is concave, defined over a convex set.
Therefore, the Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient for
global optimality (Bazaraa, Sherali and Shetty [1993]). 

Let di,j = 1 – e–a
i,j

x
i,j,t for all i ∈ {n} and all j ∈ {ni}with 0 ≤ xi,j,t ≤ B and ai,j ≥ 1 . 

Lemma 1 In each technology development module i at most one project j will be
funded. 

Using this result, we can now formulate the optimization problem as follows: 

(29)
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subject to the constraints: 

(30)

where k is the index of the project with the largest parameter ai,j in module i . To obtain a
concave objective function, we take the natural logarithm ln() of the objective function16: 

(31)

Each argument 1 – e–a
i,ki

x
i,ki in Λ(s) is concave. For 1 – e–a

i,ki
x
i,ki > 0, each of the

summands in Equation (30) is concave (e.g., see Rockafellar [1970]). Therefore, Λ(s) is
concave in X, and defined over a convex set.17 The KKT conditions yield the following
solution: 

(32)

This concludes the proof. 

Footnotes:

1 msachon@iese.edu 
2 mep@leland.stanford.edu 
3 This ensures that we can use the same time invariant function for the relationship between allocated budget

and probability of development success across all time periods. 
4 It is assumed here that the first period of operation (as defined by the decision maker) alone represents

“proof” that the system works. 
5 The reward of development failure is generally negative but can be positive if one accounts for lessons

learned. 
6 If S(IDev(t)), the set of all possible development outcomes for period t, contains 2k elements U, then we will

calculate one probability ϕ(U|IDev(t),Xt) for each of these possible outcomes U. Note that ∑ϕ = 1. 
7 Proofs can be found in the appendix. 
8 This result does not necessarily apply to the “mixed” strategy. 
9 See Nonlinear Programming, Bazaraa, Sherali and Shetty [1993].
10 Applying a monotone increasing function to the objective function f(X) of a maximization problem does not

alter the solution vector X* of the underlying optimization problem. 
11 If f is a (strictly) concave function and φ is a strictly increasing function, defined over the same domain as f,

then φ(f) is a (strictly) concave function. 
13 The values for ROS, ROF and RDF can be arbitrary, as long as they meet the constraints of Section 2. 
14 All numeric results are rounded to three digits. 
15 The final system will employ exactly one project of each technology module, i.e., the one which has the

largest reliability ri,k of all successfully developed ones per module i. 
16 Applying a monotone increasing function to the objective function of a maximization problem does not alter

the location of the optimum, if the transformation is defined over the whole domain of the objective
function. 

17 Since in each module we fund exactly one project, each of these has to have positive funding for V(s) > 0.
Therefore, the ln of V(s) is defined. 
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