
Working Paper

* Professor of Financial Management, PricewaterhouseCoopers Chair of Finance, IESE

IESE Business School - Universidad de Navarra
Avda. Pearson, 21 - 08034 Barcelona. Tel.: (+34) 93 253 42 00  Fax: (+34) 93 253 43 43
Camino del Cerro del Águila, 3 (Ctra. de Castilla, km. 5,180) - 28023 Madrid. Tel.: (+34) 91 357 08 09  Fax: (+34) 91 357 29 13

Copyright© 2004, IESE Business School. Do not quote or reproduce without permission

WP No 544

March, 2004

THE VALUE OF TAX SHIELDS AND THE RISK
OF THE NET INCREASE OF DEBT

Pablo Fernández *



The CIIF, International Center for Financial Research, is an interdisciplinary center
with an international outlook and a focus on teaching and research in finance. It was
created at the beginning of 1992 to channel the financial research interests of a
multidisciplinary group of professors at IESE Business School and has established
itself as a nucleus of study within the School’s activities.

Ten years on, our chief objectives remain the same:

• Find answers to the questions that confront the owners and managers of
finance companies and the financial directors of all kinds of companies in
the performance of their duties

• Develop new tools for financial management

• Study in depth the changes that occur in the market and their effects on the
financial dimension of business activity

All of these activities are programmed and carried out with the support of our
sponsoring companies. Apart from providing vital financial assistance, our sponsors
also help to define the Center’s research projects, ensuring their practical relevance.

The companies in question, to which we reiterate our thanks, are:
Aena, A.T. Kearney, Caja Madrid, Fundación Ramón Areces, Grupo Endesa,
Telefónica and Unión Fenosa.

http://www.iese.edu/ciif/



THE VALUE OF TAX SHIELDS AND 
THE RISK OF THE NET INCREASE OF DEBT. YEAR 2004

Abstract

The value of tax shields depends on the nature of the stochastic process of the net
increase of debt; it does not depend on the nature of the stochastic process of the free cash flow. 

The value of tax shields in a world with no leverage cost is the tax rate times the
debt, plus the tax rate times the present value of the net increases of debt. This expression is
the difference between the present values of two different cash flows, each with its own risk:
the present value of taxes for the unlevered company and the present value of taxes for the
levered company.  

For perpetual debt, the value of tax shields is the debt times the tax rate. When the
company is expected to repay the current debt without issuing new debt, the value of tax
shields is the present value of the interest times the tax rate, discounted at the required return
to debt.

JEL classification: G12; G31; G32

Keywords: Value of tax shields, present value of the net increases of debt, required return to
equity, leverage cost, unlevered beta, levered beta.



THE VALUE OF TAX SHIELDS AND 
THE RISK OF THE NET INCREASE OF DEBT. YEAR 2004

Introduction

There is no consensus in the existing literature regarding the correct way to compute
the value of tax shields. Most authors think of calculating the value of the tax shield in terms
of the appropriate present value of the tax savings due to interest payments on debt. Myers
(1974), however, proposes that the tax savings be discounted at the cost of debt, while Harris
and Pringle (1985) propose that they be discounted at the cost of capital for the unlevered
firm. Reflecting this lack of consensus, Copeland et al. (2000, p. 482) claim that “the finance
literature does not provide a clear answer about which discount rate for the tax benefit of
interest is theoretically correct.” In this paper, I show that a consistent way to estimate the
value of the tax savings is by thinking of them not as the present value of a set of cash flows,
but as the difference between the present values of two different sets of cash flows: flows to
the unlevered firm and flows to the levered firm.

I show that the value of tax shields in a world with no leverage cost is the tax rate
times the debt, plus the tax rate times the present value of the net increases of debt. This
expression is the difference between the present values of two different cash flows, each with
its own risk: the present value of taxes for the unlevered company and the present value of
taxes for the levered company.  

For perpetual debt, the value of tax shields is equal to the tax rate times the value of
debt.  When the company is expected to repay the current debt without issuing new debt,
Myers (1974) applies, and the value of tax shields is the present value of the interest times the
tax rate, discounted at the required return to debt. For constant growth companies, and under
certain assumptions, the value of tax shields in a world with no leverage costs is the present
value of the debt times the tax rate times the required return to the unlevered equity,
discounted at the unlevered cost of equity (Ku). The paper also shows that some commonly
used methodologies for calculating the value of tax shields, including Harris and Pringle
(1985), Miles and Ezzell (1980), and Ruback (2002), are incorrect for growing perpetuities.

The paper is organized as follows. Section 2 follows a new method to prove that the
value of tax shields in a world without leverage costs is equal to the tax rate times the value
of debt (DT), plus the tax rate times the present value of the net increases of debt. Section 2
also applies this general result to specific situations, and derives the relation between the
required return on assets and the required return on equity for perpetuities in a world without
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leverage costs. The corresponding relation between the beta of the levered equity, the beta of
the unlevered equity, and the beta of debt is also derived. Section 3 revises and analyzes the
existing financial literature on the value of tax shields. Most of the existing approaches,
including Harris and Pringle, Miles and Ezzell, and Ruback, yield inconsistent results
regarding the present value of the net increases of debt.  Finally, Section 4 concludes. 

2. Value of tax shields and the stochastic process of net debt increases

The present value of debt (D) plus that of the equity (E) of the levered company is
equal to the value of the unlevered company (Vu) plus VTS, the value of tax shields due to
interest payments:

Et + Dt = Vut + VTSt (1)

In the literature, the value of tax shields defines the increase in the company’s value
as a result of the tax saving obtained by the payment of interest. In this definition, the total
value of the levered company is equal to the total value of the unlevered company. If leverage
costs do not exist, then Eq. (1) could be stated as follows:

Vut + Gut = Et + Dt + GLt (2)

where Gu is the present value of the taxes paid by the unlevered company and GL is the
present value of the taxes paid by the levered company. Equation (2) means that the total
value of the unlevered company (left-hand side of the equation) is equal to the total value of
the levered company (right-hand side of the equation). Total value is the enterprise value
(often called the value of the firm) plus the present value of taxes. Please note that Equation (2)
assumes that expected free cash flows are independent of leverage. When leverage costs do
exist, the total value of the levered company is lower than the total value of the unlevered
company. A world with leverage cost is characterized by the following relation:

Vut + Gut = Et + Dt + GLt + Leverage Cost > Et + Dt + GLt (3)

Leverage cost is the reduction in the company’s value due to the use of debt.

From (1) and (2), it is clear that VTS is

VTSt = Gut - GLt (4)

Note that the value of tax shields is not the present value (PV) of tax shields. It is the
difference between the PVs of two flows with different risk: the PV of the taxes paid by
the unlevered company (Gu) and the PV of the taxes paid by the levered company (GL).

It is quite easy to prove that the relation between the profit after tax of the levered
company (PATL) and the equity cash flow (ECF) is: 

ECFt = PATLt - ∆NFAt - ∆WCRt + ∆Dt (5)

Where:

∆WCRt = Increase of Working Capital Requirements in period t.
∆NFAt = Increase of Net Fixed Assets in period t.
∆Dt = Dt - Dt-1 = Increase of Debt in period t.
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The relation between the free cash flow (FCF) and the profit after tax of the
unlevered company (PATu) is:

FCFt = PATut - ∆NFAt -∆WCRt (6)

T is the tax rate. As the relation between the profit after tax (PAT) and the profit
before tax (PBT) is PAT = PBT (1-T), the taxes paid every year by the unlevered company
(TaxesU) are 

TaxesUt = T·PBTut = [T/(1+T)]  (FCFt + ∆NFAt + ∆WCRt) (7)

And the taxes paid by the levered company are:

TaxesLt = T·PBTt = [T/(1+T)]  (ECFt + ∆NFAt +∆WCRt -∆Dt) (8)

PV0[·] is the present value operator. The present value in t=0 of equations (7) and (8)
are:

Gu0 = [T/(1+T)]  (Vu0 + PV0[∆NFAt +∆WCRt]) (9)

GL0 = [T/(1+T)]  (E0 + PV0[∆NFAt +∆WCRt]- PV0[∆Dt]) (10)

Equation (9) means that the present value of the taxes paid by the unlevered
company (Gu) is the present value of the taxes paid every year (TaxesU). The value of the
unlevered equity (Vu0) is: Vu0 = PV0[FCFt] = PV0[E{FCFt}; Ku]. E{·} is the expected value
operator.

Equation (10) means that the present value of the taxes paid by the levered company
(GL) is the present value of the taxes paid every year (TaxesL). The value of the levered
equity (E0) is: E0 = PV0[ECFt] = PV0[E{ECFt}; Ke].

Following equation (4), the value of tax shields is the difference between (9) and
(10):

VTS0 = Gu0 - GL0 = [T/(1+T)]  (Vu0 – E0 + PV0[∆Dt]) (11)

As, according to equation (1), Vu0 – E0 = D0 - VTS0,

VTS0 = [T/(1+T)]  (D0 - VTS0 + PV0[∆Dt]). And the value of tax shields is:

VTS0 = T· D0 + T· PV0[∆Dt] (12)

We do not know which are the correct values of Gu and GL, but we know the value
of the difference, provided we can value PV0[∆Dt], the present value of the net debt
increases.
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Equation (12) shows that the value of tax shields depends only upon the nature of
the stochastic process of the net increase of debt, and does not depend upon the nature of the
stochastic process of the free cash flow1. The problem of equation (12) is how to calculate
PV0[∆Dt], which requires knowing the appropriate discount rate to apply to the expected
value of the increase of debt.

Equation (12) is also derived in Appendix 1 using pricing kernels. It is illustrative to
apply (12) to specific situations. 

2.1.  Perpetual debt

If the debt is a constant perpetuity (a consol), PV0[∆Dt] = 0, and

VTS0 = T· D0 (13)

This result is far from being a new idea. Brealey and Myers (2000), Modigliani and
Miller (1963), Taggart (1991), Copeland et al. (2000), Fernández (2004) and many others
report it. However, the way of deriving it is new.  Most of these papers reach this result by
arguing that the appropriate way of computing the value of the tax shield is to consider a
certain flow DT multiplied by some measure of cost of funds, α, and then discounting that
flow at the same rate α. At first glance, α could be anything, related or unrelated to the
company that we are valuing. Modigliani and Miller (1963) argue that α is the risk-free rate
(RF). Myers (1974) assumes that α is the cost of debt (Kd) and says that the value of tax
shields is the present value of the tax savings (D·Kd·T) discounted at the cost of debt (Kd).
Fernández (2004) argues that α is the required return to unlevered equity (Ku).

2.2. Debt of one-year maturity but perpetually rolled-over

As in the previous case, E{Dt} = D0, but the debt is expected to be rolled-over every
year. The appropriate discount rate for the cash flows due to the existing debt is Kd3. Define
KND as the appropriate discount rate for the new debt that must be obtained every year, then:

Present value of obtaining the new debt every year4 = D0 / KND

Present value of the principal repayments at the end of every year5 = D0 (1+ KND) /
[(1+Kd) KND].

4

1 If the nominal value of debt (N) is not equal to the value of debt (D), because the interest rate (r) is different
from the required return to debt flows (Kd), equation (12) is: VTS0 = T· D0 + T· PV0[∆Nt].
The relationship between D and N is: D0 = PV0[∆Nt] + PV0[Nt·rt].

2 If the nominal value of debt (N) is not equal to the value of debt (D), because the interest rate (r) is different
from the required return to debt flows (Kd), equation (16a) is: VTS0 = T· D0 + T· PV0[∆Nt].
The relationship between D and N is: D0 = PV0[∆Nt] + PV0[Nt·rt].
If a company has difficult access to banks or to financial markets, these difficulties may be solved by paying
a high cost of debt. In these situations, D > N.

3 We use Kd so as not to complicate the notation. It should be Kdt, a different rate following the yield curve.
Using Kd we may also think of a flat yield curve.

4 Present value of obtaining the new debt every year = D /(1+KND) + D /(1+KND)2 + D /(1+KND)3 + ...
because D = E{Dt}, where Dt is the new debt obtained at the end of year t (beginning of t+1).

5 The present value of the principal repayment at the end of year 1 is D /(1+Kd).
The present value of the principal repayment at the end of year 2 is D/[(1+Kd)(1+ KND)].
The present value of the principal repayment at the end of year t is D/[(1+Kd)(1+ KND)t-1].
Because D = E{Dt}, where Dt is the debt repayment at the end of year t.



PV0[∆Dt]  is the difference between these two expressions. Then: 

PV0[∆Dt]  = - D0 (KND - Kd) / [(1+Kd) KND] (14)

If  KND = Kd, then PV0[∆Dt]  = 0

In a constant perpetuity (E{FCFt} = FCF0), it seems reasonable that, if we do not
expect credit rationing, KND = Kd, which means that the risk associated with the repayment
of the current debt and interest (Kd) is equivalent to the risk associated with obtaining an
equivalent amount of debt at the same time (KND).

2.3. Debt is proportional to the Equity value

This is the assumption made by Miles and Ezzell (1980) and Arzac and Glosten
(2003), who claim that if Dt = L·Et, then the value of tax shields for perpetuities growing at a
constant rate g is:

(15)

Substituting (15) in (12), we get:

(16)

For the no growth case (g = 0), equation (16) is: 

PV0[∆Dt] = D (Kd-Ku) / [Ku(1+Kd)] < 0.

Comparing this expression with equation (14), it is clear that Miles and Ezzell imply
that KND = Ku. 

(16) is zero for g = (Ku-Kd) / (1+Kd) and negative for smaller growth rates. There is
not much economic sense in this expression.

Furthermore, to assume Dt = L·Et is not a good description of the debt policy of a
company because: 

1. If the company pays a dividend Divt, simultaneously the company should
reduce debt in an amount ∆Dt= - L·Divt

2. If the equity value increases, then the company should increase its debt, while
if the equity value decreases, then the company should reduce its debt. If the
equity value is such that L·Et > Assets of the company, then the company
should hold excess cash only for the sake of complying with the debt policy.

5
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2.4. Debt increases are proportional to the free cash flow

If ∆Dt = K·FCFt, then the correct discount rate for the expected increases of debt is
Ku, the required return to the unleveraged company. In the case of a constant growing
perpetuity,

PV0[∆Dt] = g·D0 / (Ku-g),

And the VTS is:

VTS0 = T·Ku·D0 / (Ku-g) (17)

For g = 0, equations (17) and (13) are equal.

Equation (17) is equal to equation (28) in Fernández (2004), although the way of
deriving it is different.

2.5. The company is expected to repay the current debt without issuing new debt

In this situation, the appropriate discount rate for the negative ∆Dt (because they are
principal payments) is Kd, the required return to the debt. In this situation, Myers (1974) applies:

PV0[∆Dt] = PV0[E{∆Dt}; Kd]

And the VTS is:

VTS0 = D·T + T·PV0[E{∆Dt}; Kd] (18)

For perpetual debt, equations (18), (17) and (13) are equal.

3.  Value of net debt increases implied by the alternative theories 

There is a considerable body of literature on the discounted cash flow valuation of
firms. This section addresses the most salient papers, concentrating particularly on those
papers that propose alternative expressions for the value of tax shields (VTS). The main
difference between all of these papers and the approach proposed above is that most previous
papers calculate the value of tax shields as the present value of the tax savings due to the
payment of interest.  Instead, the correct measure of the value of tax shields is the difference
between two present values: the present value of taxes paid by the unlevered firm and the
present value of taxes paid by the levered firm.  We will show how these proposed methods
result in inconsistent valuations of the tax shields.

Modigliani and Miller (1958, 1963) study the effect of leverage on firm value. Their
famous Proposition 1 states that, in the absence of taxes, the firm’s value is independent of its
debt, i.e., E + D = Vu, if T = 0.  In the presence of taxes and for the case of a perpetuity, but
with zero risk of bankruptcy, they calculate the value of tax shields by discounting the present
value of the tax savings due to interest payments on risk-free debt at the risk-free rate (RF),
i.e., VTS= PV[E{D·T·RF}; RF] = D·T.  As indicated above, this result is the same as our
equation (16) for the case of perpetuities, but it is neither correct nor applicable for growing
perpetuities.  Modigliani and Miller explicitly ignore the issue of the riskiness of the cash
flows by assuming that the probability of bankruptcy was always zero. 
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Myers (1974) introduces the APV (adjusted present value) method, in which the
value of the levered firm is equal to the value of the firm with no debt plus the present value
of the tax savings due to the payment of interest. Myers proposes calculating the VTS by
discounting the expected tax savings (D·Kd·T) at the cost of debt (Kd). The argument is that
the risk of the tax savings arising from the use of debt is the same as the risk of the debt. The
value of tax shields is VTS = PV[E{D·Kd·T}; Kd].  This approach has also been
recommended in later papers in the literature, such as Luehrman (1997). On section 2.5 we
have shown that this expression is correct only when the company is expected to repay the
current debt without issuing new debt.

Harris and Pringle (1985) propose that the present value of the tax savings due to the
payment of interest should be calculated by discounting the expected interest tax savings
(D·Kd·T) at the required return to unlevered equity (Ku), i.e., VTS = PV[E{D·Kd·T}; Ku].
Their argument is that the interest tax shields have the same systematic risk as the firm’s
underlying cash flows and, therefore, should be discounted at the required return to assets
(Ku). Furthermore, Harris and Pringle believe that “the MM position is considered too
extreme by some because it implies that interest tax shields are no more risky than the
interest payments themselves” (p. 242). Ruback (1995, 2002), Kaplan and Ruback (1995),
Brealey and Myers (2000, p. 555), and Tham and Vélez-Pareja (2001), this last paper
following an arbitrage argument, also claim that the appropriate discount rate for tax shields
is Ku, the required return to unlevered equity. 

Ruback (2002) presents the Capital Cash Flow (CCF) method and claims that the
appropriate discount rate is Ku; Arditti and Levy (1977) suggested that the firm’s value could
be calculated by discounting the capital cash flows instead of the free cash flow. The capital
cash flows are the cash flows available for all holders of the company’s securities, whether
debt or equity, and are equivalent to the equity cash flows plus the cash flows corresponding
to the debt holders. The capital cash flow is also equal to the free cash flow plus the interest
tax shield (D·Kd·T). According to the Capital Cash Flow (CCF) method, the value of the debt
today (D) plus that of the shareholders’ equity (E) is equal to the expected capital cash flow
(CCF) discounted at the weighted average cost of capital before tax (WACCBT):

E + D = PV[E{CCF}; WACCBT]. (19)

The definition of WACCBT is

WACCBT = (E Ke  + D Kd)  /  (E + D) (20)

because (20) is the discount rate that ensures that the value of the company obtained using the
following two expressions is the same:   

PV[E{CCF}; WACCBT] = PV[E{FCF}; WACC].  (21)

But Ruback (1995, 2002) assumes that WACCBT = Ku. With this assumption,
Ruback gets the same valuation as Harris and Pringle (1985) because

E + D = PV[E{FCF}; Ku] + PV[E{D·Kd·T}; Ku] = Vu + PV[E{D·Kd·T}; Ku] (22)

Note that PV[E{D·Kd·T}Ku] is the VTS according to Harris and Pringle (1985).
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Ruback (2002, p. 91) also shows that the relation between the beta of the levered
equity (βL), the beta of the unlevered equity (βu), and the beta of debt (βd) consistent with
(22) is

βL = βu + (βu – βd) D / E. (23)

Therefore, all of Ruback’s results (the relation between βL and βu using no taxes,
and Ku being the appropriate discount rate for capital cash flows) come from his method of
estimating VTS, which is the same as that of Harris and Pringle.

The enterprise value (E + D) according to Fernández (2004) is

E + D = Vu + PV[E{D·Ku·T}; Ku] = PV[E{FCF + D·Kd·T}; Ku] (24)

Fernández (2004) also shows that the relation between the beta of the levered equity
(βL), the beta of the unlevered equity (βu), and the beta of debt (βd) consistent with (24) is

βL = βu + (βu – βd) D (1-T) / E. (25)

A large part of the literature argues that the value of tax shields should be calculated
differently depending on the debt strategy of the firm. A firm that wishes to keep a constant
D/E ratio must be valued differently from a firm that has a preset level of debt. Miles and
Ezzell (1980) indicate that for a firm with a fixed debt target (i.e., a constant [D/(D+E)]
ratio), the correct rate for discounting the tax savings due to debt is Kd for the first year and
Ku for the tax savings in later years. Lewellen and Emery (1986) also claim that this is the
most logically consistent method. Although Miles and Ezzell do not mention what the value
of tax shields should be, this can be inferred from their equation relating the required return
to equity with the required return for the unlevered company in equation (22) in their paper.
This relation implies that VTS = PV[E{D·T·Kd}; Ku] (1 + Ku)/(1 + Kd). Inselbag and
Kaufold (1997) and Ruback (2002) argue that if the firm targets the dollar values of debt
outstanding, the VTS is given by the Myers (1974) formula. However, if the firm targets a
constant debt/value ratio, the value of the tax shields should be calculated according to Miles
and Ezzell (1980). Finally, Taggart (1991) proposes to use Miles and Ezzell (1980) if the
company adjusts to its target debt ratio once a year, and Harris and Pringle (1985) if the
company adjusts to its target debt ratio continuously.

Damodaran (1994, p. 31) argues that if all the business risk is borne by the equity, then
the formula relating the levered beta (βL) to the asset beta (βu) is βL = βu + (D/E) βu (1 – T).
This formula is exactly the formula in equation (25), assuming that βd = 0. One interpretation
of this assumption is (Damodaran, 1994, p. 31) that “all of the firm’s risk is borne by the
stockholders (i.e., the beta of the debt is zero).” In some cases, it may be reasonable to
assume that the debt has a zero beta. But then, as assumed by Modigliani and Miller (1963),
the required return to debt should be the risk-free rate. This relation for the levered beta
appears in many finance books and is widely used by many consultants and investment
bankers as an attempt to include some leverage cost in the valuation: for a given risk of the
assets (βu), this formula results in a higher βL (and consequently a higher Ke and a lower
equity value) than equation (25). In general, it is hard to accept that the debt has no risk and
that the return on the debt is uncorrelated with the firm’s return on assets. From Damodaran’s
expression for βL it is easy to deduce the relation between the required return to equity and
the required return to assets, i.e., Ke = Ku + (D / E) (1 – T) (Ku – RF).  Although Damodaran
does not mention what the value of tax shields should be, his formula relating the levered
beta to the asset beta implies that the value of tax shields is:

VTS = PV[Ku; D·T·Ku – D (Kd – RF) (1 – T)]. (26)
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Finally, a common way of calculating the levered beta with respect to the asset beta
(often used by consultants and investment banks) is the following (see, e.g., Ruback 1995, p. 5): 

βL = βu (1+ D/E) (27)

It is obvious that given the same value for βu, a higher βL (and a higher Ke and a
lower equity value) is obtained than according to equation (25) or Damodaran (1994).
Formula (27) relating the levered beta to the asset beta implies that the value of tax shields is
VTS = PV[E{D·T·Kd - D(Kd - RF)}; Ku]. Given its widespread use in the industry, we will
call this method the Practitioners’ method.

Given the large number of alternative methods existing in the literature to calculate
the value of tax shields, Copeland, Koller, and Murrin (2000, p. 482) assert that “the finance
literature does not provide a clear answer about which discount rate for the tax benefit of
interest is theoretically correct.” They further conclude, “We leave it to the reader’s judgment
to decide which approach best fits his or her situation.”

We propose three ways to compare and differentiate among the different approaches.
One way is to calculate the value of tax shields for level perpetuities according to the
different approaches.  A second way is to check the implied present value of the net increases
of debt in each of the different approaches.  A third way is to check the implied relation
between the unlevered and levered cost of equity in each of the different approaches.  The
levered cost of equity should always be higher than the cost of assets (Ku), since equity cash
flows are riskier than the free cash flows.

Table 1 summarizes the implications of these approaches for the value of tax shields
in level perpetuities. Table 1 shows that only four out of the eight approaches compute the
value of tax shield in perpetuities as DT.  The other four approaches imply a lower value of
tax shields than DT.

From equation (12) the present value of the increases of debt is:

PV0[∆Dt]= (VTS0 - T· D0) / T 

Applying this equation to the theories mentioned, we may construct the predictions
that each of these theories have for PV0[∆Dt]. These predictions are reported in Table 2.
PV0[∆Dt] for level perpetuities should be zero. That is the case only in Modigliani-Miller
(1963), Myers (1974) and Fernández (2004).

As we have already argued, Myers (1974) should be used when the company will
not issue new debt; Fernández (2004) when the company expects to issue new debt in the
future; and Modigliani-Miller may be applied only if the debt is risk-free. 

Table 3 summarizes the implications for the relation between the cost of assets and
the cost of equity in growing perpetuities. Table 3 shows that not all of the approaches also
satisfy the relation between the cost of equity and the cost of assets. The Modigliani and
Miller (1963) and Myers (1974) approaches do not always give a higher cost of equity than
the cost of assets.  Myers obtains Ke lower than Ku if the value of the tax shields is higher
than the value of debt. This happens when D·T·Kd  / (Kd – g) > D, that is, when the growth
rate is higher than the after-tax cost of debt: g > Kd (1 – T).  Please note also that in this
situation, as the value of tax shields is higher than the value of debt, the equity (E) is worth
more than the unlevered equity (Vu). This hardly makes any economic sense.  Modigliani and
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Miller also provides the inconsistent result of Ke being lower than Ku if the value of the tax
shields is higher than D [Ku – Kd (1 – T)] / (Ku – g). This happens when either the leverage,
the tax rate, the cost of debt, or the market risk premium are high. 

4. Conclusions

This paper shows that the value of tax shields is:

VTS0 = T· D0 + T· PV0[∆Dt] (12)

The critical parameter for calculating the value of tax shields is the present value of
the net increases of debt. It may vary for different companies, but in some special
circumstances it may be calculated.

If the debt is a constant perpetuity (a consol), PV0[∆Dt] = 0, and VTS0 = T· D0

If the company is expected to repay the current debt without issuing new debt, the
appropriate discount rate for the negative ∆Dt (because they are principal payments) is Kd,
the required return to the debt. In this situation, Myers (1974) applies: PV0[∆Dt] =
PV0[E{∆Dt}; Kd]. And the VTS is VTS0 = D T + T·PV0[E{∆Dt}; Kd].

If ∆Dt = K·FCFt, then the correct discount rate for the increases of debt is Ku, the
required return to the unleveraged company: PV0[∆Dt] = PV0[E{∆Dt}; Ku].  In the case of a
constant growing perpetuity, PV0[∆Dt] = g·D0 / (Ku-g). And the VTS is: VTS0 = T·Ku·D0 /
(Ku-g).

The paper also shows that discounting the expected tax shields at the required return
to unlevered equity, as suggested by Harris and Pringle (1985), Miles and Ezzell (1980), and
Ruback (2002), is inconsistent.
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Table 1. Comparison of value of tax shields (VTS) in perpetuities. 
Only three out of the seven approaches correctly compute the value of the tax shield in perpetuities as DT. 

The other four theories imply a lower value of the tax shield than DT.

Ku = unlevered cost of equity
Kd = required return to debt
T = corporate tax rate
D = debt value
RF = risk-free rate
PV[E{D·T·Ku}; Ku] = present value of the expected value of D·T·Ku discounted at the rate Ku.

Table 2. Present value of the increases of debt implicit in the most popular formulae for calculating the
value of tax shields. Constant growing perpetuities at a rate g

11

Theories    VTS VTS in perpetuities

Correct method D·T + T· PV0[∆Dt] DT
Damodaran (1994) PV[E{D·T·Ku - D (Kd- RF) (1-T)}; Ku] < DT

Practitioners PV[E{D·T·Kd  - D (Kd- RF)}; Ku] < DT
Harris-Pringle (1985), Ruback (1995) PV[E{D·T·Kd}; Ku] < DT

Myers (1974) PV[E{D·T·Kd}; Kd] DT
Miles-Ezzell (1980) PV[E{D·T·Kd}; Ku] (1+Ku) / (1+Kd) < DT

Modigliani-Miller (1963) PV[E{D·T·RF}; RF] DT
Fernández (2004) PV[E{D·T·Ku}; Ku] DT

PV0[∆∆Dt] for constant growing PV0[∆∆Dt] if g=0
perpetuities at a rate g

Damodaran (1994)

Practitioners

Harris and Pringle (1985),

Ruback (1995)

Myers (1974) g·D0/(Kd-g) 0

Miles and Ezzell (1980)

Modigliani-Miller (1963) g·D0/(RF-g) 0

Fernández (2004) g·D0/(Ku-g) 0

T

T)-(1

gKu

)R-(KdD

gKu

g·D F00

−
−

−

T g)(Ku

)R-(KdD

gKu

Kd)-(KuD

gKu

g·D F000

−
−

−
−

−

gKu

Kd)-(KuD

gKu

g·D 00

−
−

− Ku

Kd)-(KuD0−

Kd)g)(1(Ku

Kd)-(KuD
 -

gKu

g·D 00

+−−

T

T)-(1

Ku

)R-(KdD F0−

Kd)Ku(1

Kd)-(KuD
 - 0

+

TKu

)R-(KdD

Ku

Kd)-(KuD F00 −−



Table 3. Comparison of the relation between Ke (levered cost of equity) and Ku (unlevered cost of
equity) for growing perpetuities. 

The approaches of Modigliani and Miller (1963) and Myers (1974) do not always result in a higher cost of
equity (Ke) than cost of assets (Ku).  Myers (1974) obtains Ke lower than Ku if the value of tax shields is

higher than the value of debt. This happens when the growth rate (g) is higher than the after-tax cost of debt,
i.e., g > Kd (1 – T). Modigliani and Miller (1963) also provide the inconsistent result of Ke being lower than
Ku if the value of tax shields is higher than D [Ku – Kd (1 – T)] / (Ku – g). This happens when leverage, the

tax rate, the cost of debt, or the market risk premium are high.

* Valid only for growing perpetuities

D = debt value
E = equity value
g = growth rate
Kd = required return to debt
RF = risk-free rate
T = corporate tax rate
VTS = value of tax shields

12

Theories    Ke (levered cost of equity) Ke<Ku
Correct method 

Damodaran (1994) Ke = Ku + (D/E) (1 - T) (Ku – RF) No
Practitioners Ke = Ku + (D/E) (Ku – RF) No

Harris-Pringle (1985), Ke = Ku + (D/E) (Ku – Kd) No
Ruback (1995)
Myers (1974) Ke = Ku + (D - VTS) (Ku – Kd) /E Yes, 

if g > Kd (1 – T)

Miles-Ezzell (1980) No

Modigliani-Miller (1963) Yes, 
if VTS> D [Ku–Kd(1–T)] / (Ku–g)

Fernández (2004) Ke = Ku + (D/E) (1 - T) (Ku – Kd) No

Ke = Ku +
D

E
 (Ku - Kd) 1-

T Kd

1+ Kd







Ke = Ku+
D

E
[Ku − Kd(1- T) - (Ku - g)

VTS

D
] *
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Appendix 1

Derivation of the VTS formula using the pricing kernel

I assume that the price today (P0) of an asset that pays a random amount CFt at time
t is the sum of the expectation of the product of CFt and Mt, the pricing kernel for time t cash
flows:

E{} is the expected value operator.
The value of the unlevered equity (Vu) and the value of the equity are:

Applying the same valuation methodology to equations  (7) and (8)

TaxesUt = T·PBTut = [T/(1+T)]  (FCFt + ∆NFAt + ∆WCRt) (7)

TaxesLt = T·PBTt = [T/(1+T)]  (ECFt + ∆NFAt +∆WCRt -∆Dt) (8)

we get:      and        

Taking into consideration that VTS = Gu – GL, we get:

=  

As, following equation (1), Vu – E = D – VTS, we get:

, which is equation (12).
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Appendix 2

Main valuation formulas
Market value of the debt = Nominal value

*Valid only for growing perpetuities
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Theories V TS Ke

Correct VTS0 = T·  D0 + T·  PV0[∆Dt]

Damodaran (1994) PV[E{D·T·Ku - D (Kd-RF) (1-T)}; Ku] Ke = Ku + (D/E) (1 - T) (Ku – RF)
Practitioners PV[E{D·T·Kd  - D (Kd-RF)}; Ku] Ke = Ku + (D/E) (Ku – RF)

Harris-Pringle (1985),
Ruback (1995)

PV[E{D·T·Kd}; Ku] Ke = Ku + (D/E) (Ku – Kd)

Myers (1974) PV[E{D·T·Kd}; Kd] Ke = Ku + (D - VTS) (Ku – Kd) /E
Miles-Ezzell (1980) PV[E{D·T·Kd}; Ku] (1+Ku) / (1+Kd) Ke = Ku +

D
E

 (Ku - Kd) 1-
T Kd

1+ Kd







Modigliani-Miller
(1963)

PV[E{D·T·RF}; RF] Ke = Ku +
D

E
[Ku − Kd(1- T) - (Ku - g)

VTS

D
] *

Fernández (2004) PV[E{D·T·Ku}; Ku] Ke = Ku + (D/E) (1 - T) (Ku – Kd)  (21)
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