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1 Introduction

In many dynamic models, we are interested in whether the actions and state variables have strategic

complementarity or substitutability properties. The reason for this is that many qualitative features of

the dynamics will be driven by these properties. This applies, for example, to models of investment or

pricing with adjustment costs, to models where state variables are research and development (R&D),

advertising stocks, accumulated knowledge or installed customer base, or to models of macroeconomic

complementarities arising from increasing returns, investment, search or adoption externalities.

In this paper we explore the issue in the context of Markov-perfect equilibria of finite-horizon discrete-

time games. Markov strategies depend only on (state) variables that condense the direct effect of the past

on the current payoff. A Markov-perfect equilibrium (MPE) is a subgame-perfect equilibrium in Markov

strategies.

A particular question of interest is whether and how static complementarities translate into dynamic

complementarities. A payoff function displays strategic complementarity when the incremental benefit of

any action of a player is increasing in the other actions of the player as well as in the actions of rivals.

Then we say that actions are strategic complements. We can think of dynamic strategic complementarity

in at least two ways. First, we can think of “contemporaneous” strategic complementarity when the value

function at a MPE displays strategic complementarity for each player. We can think of “intertemporal”

strategic complementarity when the policy function at a MPE is monotone increasing in the state variables.

For example, when each player controls a set of state variables, we can say that there is intertemporal

strategic complementarity when a player raising the state variables under its control today will, in turn,

increase the state variables of the rivals tomorrow. We could define the strategic substitutability properties

of equilibria similarly. In macroeconmics, for example, we may think that contemporaneous complemen-

tarities have a multiplier effect on shocks while intertemporal complementarities are a basic propagation

mechanism.1 Political economy examples are provided by Alesina and Tabellini (1990) and Persson and

Tabellini (2000) who show that current and future government spending are intertemporal strategic sub-

stitutes, and by Baldursson and von der Fehr (2006), who show that current and future emission quota

allocations are intertemporal strategic complements.

Consider a two-stage game to illustrate what we are after. Players invest in some variable at the first

stage, say promotion effort that fosters brand loyalty, and then compete in the second stage, say in prices.

Suppose, furthermore, that strategies at the second stage are strategic complements. The questions we

are trying to answer are as follows.

• When are promotion strategies strategic complements when price competition with the same prop-
erty is anticipated? In this case, when rivals increase promotion expenditure, we also want to. That

is, under what conditions are the strategies in the reduced-form first-stage game, obtained by folding

back second-stage payoffs at a subgame-perfect equilibrium, also strategic complements?

• When does an increase in promotion expenditure by any firm at the first stage induce higher prices

at the second?

The exercise is also of interest because the dynamic strategic complementarity or substitutability

properties have a bearing on whether an initial dominance of a firm is reinforced or fades away (see, for

example, Athey and Schmutzler (2001)).

1See Cooper and Haltiwnager (1996) and Cooper and Johri (1997) for evidence of complementarities in macroeconomics.
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Echenique (2004) has argued forcefully that static complementarities assumptions are not sufficient

to guarantee extensive-form complementarities. Indeed, it is easy to construct two-stage games examples

where at the second stage the complementarities properties are fulfilled (at least in weak form such as in

Milgrom and Shanon (1994)), second-stage equilibria are monotone in first-stage actions, but the induced

first-period game does not have complementarities. In this paper we provide a positive result that requires

the full force of supermodularity of payoffs in addition to some properties of the second-stage equilibrium

(or, more generally for Markov games, of the contemporaneous equilibrium given state variables).

Consider a MPE of a n-player finite-horizon game. We assume that the reader is familiar with the

basic lattice-theoretic tools and results (see Appendix 4.1 for a summary of the method and results). The

main result is that if:

• the current payoff of each player has the complementarity property in any pair of variables (increasing
differences) and positive spillovers;

• the law of motion is increasing and supermodular in actions and state variables;

• the contemporaneous equilibrium is continuous and supermodular in the state variables; and

• payoffs, the law of motion and the equilibrium fulfill a convexity property;

then the contemporaneous equilibrium is increasing in the state variables and the value function is

supermodular.

These conditions are stringent and some are on nonprimitives (i.e. on the equilibrium), they are easy

to check and allow to obtain comparative static results. For example, we know that a linear-quadratic

finite-horizon game will have a linear MPE (Kydland, 1975). However, the equilibrium may be quite

cumbersome to compute. Even if there is a closed-form solution, as emphasized by Cheong and Judd

(2006), typically many pages are needed to describe the solution -indeed, more than the present paper-

and the solution proves useless to provide comparative static results. In the linear-quadratic context we

know already that the linear equilibrium will fulfil trivially the supermodularity and convexity properties

(the same applies to the law of motion). From the payoff properties, we can then derive the desired results

without any need to get into computations. We illustrate this approach in Sections 3.2 and 3.3. It is

worth noting that the linear-quadratic model is the workhorse model for Markov games.

This paper is organized as follows. In Section 2 we present the model and results. In Section 3 we

present examples of two-stage games, dynamic games with learning or network effects, and dynamic games

with adjustment costs. In Appendix A we summarize some of the lattice-theoretic methodology for the

reader and provide some proofs.

2 Model and results

Consider a n-player finite-horizon discrete time, t = 1, . . . , T , Markov game. A Markov strategy depends

only on state variables, denoted by y and lying in a compact rectangle of Euclidean space, that condense

the direct effect of the past on the current payoff. Let the payoff of player i in period t be πti(x
t, yt),

where xtj is the vector of actions of player j, lying in a compact rectangle of Euclidean space At
j(y

t),

xt ∈ At(yt) ≡
Qn

i=1A
t
i(y

t) is the current action profile vector and yt is a vector of state variables evolving

according to yt = f t(xt−1, yt−1). We allow, therefore, for state variables to condition the set of feasible

actions. As A(y) is a compact rectangle we can write A(y) = [a(y), a(y)]. Endow the Euclidean space with
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the usual component-wise order. We say that A(y) is ascending in y if both a(·) and a(·) are increasing
in y.2

We say that πi(x, y) displays convex nonnegative (nonpositive) spillovers in x−i if πi is increasing

(decreasing) and convex in xjh for any j 6= i and action h of player j. (In the differentiable case,

∂πi/∂xjh ≥ (≤)0 and ∂2πi/(∂xjh)
2 ≥ 0 for j 6= i and action h of player j.)

We drop the time superscripts unless there is risk of confusion. As an illustration, consider the class of

Markov games in which πi(x, y) is the current payoff for player i, with y the action profile in the previous

period (state variables) and x ∈ A(y) the current action profile. This simple class of games encompasses

two-stage games and games of simultaneous moves with adjustment costs or of alternating moves.

Players maximize the discounted sum of profits (without loss of generality in our finite-horizon game we

let the discount factor equal one: δ = 1). A MPE is a subgame-perfect equilibrium in Markov strategies.

That is, a MPE is a set of strategies optimal for any firm and for any state of system, given the strategies

of rivals.

2.1 The result for a general Markov game

An extremal equilibrium is either the largest or the smallest element in the equilibrium set. The following

proposition provides conditions under which an extremal MPE of the dynamic game is monotone increasing

in the state variables and has an associated value function which is supermodular. See the Appendix for

the definitions and basics of supermodular games.

Proposition 1 Suppose that for each i and any period, πi(x, y) is continuous, supermodular in (x, y)

(i.e. displays increasing differences in any pair of variables) and has convex nonnegative (nonpositive)

spillovers in xjh, j 6= i and all h, and is increasing (decreasing) and convex in each yk. Suppose also

that Ai(y) is ascending in y. Suppose that fk(x, y) is continuous, supermodular (submodular) in (x, y)

and increasing and convex (concave) in each xih and in each yk. Consider an extremal MPE where at

any period, for given states variables y, x∗ih(y) is continuous, supermodular (submodular) in y and convex

(concave) in each yk for any player i and action h. Then x∗ih(y) is increasing in y, and the value function

Vi(y) associated to the extremal MPE is continuous, supermodular in y, and increasing (decreasing) and

convex in each yk for any i.

Proof. Consider an extremal equilibrium x∗(y) of the game defined by the payoffs πi(x, y) and strategy

set Ai(y) for a given y. This corresponds to the game in the last period. As πi(x, y) is continuous in x

(or just in xi) the game is supermodular and extremal equilibria exist (see, for example, Vives (1990a)).

In the last period there is no continuation value and we have that

Vi(y) ≡ πi(x
∗(y), y) = max

xi∈Ai(y)
φi(xi, y),

where φi(xi, y) ≡ πi(xi, x
∗
−i(y), y). Note that x

∗
jh(y) increases in y for any h because πi is supermodular

in xi, has increasing differences in (xi, y), and Ai(y) is ascending in y (see Appendix 4.1).

We show that under the assumptions Vi(y) is (1) supermodular and continuous in y and (2) increasing

(decreasing) and convex in each yk.

(1) It follows that φi(xi, y) has increasing differences in (xi, y) because: (i) πi has increasing differences

in (xi, (x−i, y)); (ii) x∗j (y) increases in y for j 6= i. Furthermore, we have that φi(xi, y) is supermodular

2By “increasing” or “decreasing” we always mean weakly.
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in y for any xi. This follows because each x∗jh(·) is increasing and supermodular (submodular) in y,

πi(xi, x−i, y) is supermodular in (x−i, y) (i.e. displays increasing differences in any pair of components of

the vector (x−i, y)) for any xi, and is increasing (decreasing) and convex in xjh, j 6= i, for all h, y, and

all xk, k 6= j (see Lemma 7 in Appendix 4.1; a differentiable regular version is given in Appendix 4.2 for

the benefit of the reader). We conclude that Vi(y) is supermodular in y as supermodularity is preserved

under the maximization operation. Furthermore, the function Vi(·) is continuous as πi(·) is continuous
and x∗(·) is also continuous by assumption.
(2) Vi(y) is increasing (decreasing) in yk because πi is increasing (decreasing) in xjh, j 6= i, and we

know that x∗jh(y) is increasing in y, and πi is increasing (decreasing) in yk. Vi(y) is convex in each yk

because πi has increasing differences in all pairs of variables, πi is increasing (decreasing) and convex in

xjh, j 6= i, and increasing (decreasing) and convex in yk. Also, x∗jh(y) is increasing and convex (concave)

in each yk. (Appendix 4.2 contains a differentiable regular version of the result for the benefit of the

reader.)

Consider now a generic period before the last and, for given states variables y, a continuation extremal

MPE with continuation value function Wi(z) where z = f(x, y), and let the current extremal equilibrium

of the continuation game be x∗(y). Suppose that Wi(z) is continuous, supermodular in z and increasing

(decreasing) and convex in each zk.

Now, given thatWi(z) is supermodular and increasing (decreasing) and convex in each zk, Wi(f(x, y))

will be supermodular in (x, y) because for each k, fk(x, y) is increasing and supermodular (submodular)

in (x, y) (see Lemma 6 in Appendix A.1). Furthermore, Wi(f(x, y)) will be increasing (decreasing) and

convex in each xjh and in each yk, given that Wi(z) is supermodular, increasing (decreasing), and convex

in each zk and fk(x, y) is increasing in (x, y), because for any k, fk(x, y) is convex (concave) in each xjh

and in each yk.

In consequence, and under the assumptions, ψi(x, y) ≡ πi(x, y)+Wi(f(x, y)) is continuous, supermod-

ular in (x, y), and increasing (decreasing) and convex in each xjh, j 6= i and all h, and in each yk (because

this holds for both πi(·) and Wi(f(·))).
As in the last period game, extremal equilibria x∗(y) will exist, and x∗jh(y) increases in y for any j

and h (because ψi is supermodular in xi, has increasing differences in (xi, y), and Ai(y) is ascending in

y). We have that

Vi(y) ≡ πi(x
∗(y), y) +Wi(f(x

∗(y), y)) = max
xi∈Ai(y)

φi(xi, y),

where φi(xi, y) = πi(xi, x
∗
−i(y), y) +Wi(f(xi, x

∗
−i(y), y)).

The value function will be have the desired properties:

• continuous and supermodular in y provided that the extremal equilibrium x∗(y) is continuous and

supermodular (submodular) in y;

• increasing (decreasing) and convex in each yk, provided that x∗jh(y) is convex (concave) in each yk

because ψi(x, y) is continuous, supermodular in (x, y), and increasing (decreasing) and convex in each

xjh, j 6= i and all h, and in each yk, similarly as for πi(·) in the proof of (1) and (2) above. We have the
desired result by backwards induction.

Remark. The proposition does not show the existence of a MPE because it is assumed that at any stage

the extremal contemporaneous equilibrium x∗(y) is continuous in y. However, given our assumptions, the

last stage of the game is a supermodular static game and, therefore, extremal equilibria exist. See Dutta

and Sundaran (1998) for a survey of existence problems in Markovian games. Those authors emphasize
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that general existence results available do not cover the case of a deterministic transition, which is the

one considered here. Existence results of MPE using lattice-theoretic tools can be found in Curtat (1996),

Sleet (2001), and Amir (2005).

The sufficient conditions required for the preservation of supermodularity of the value functions are

quite stringent and require knowledge of the supermodularity and convexity properties of the contempo-

raneous equilibrium x∗(y). However, the conditions on the equilibrium are easily checked. A case where

they are easily fulfilled is when the game has a linear MPE. This is the case in the general linear-quadratic

formulation of Kydland (1975). Indeed, when Markov equilibria are linear they are supermodular (and

submodular) and the convexity property is fulfilled trivially. We give an example in Section 3.3.

The result cannot be extended to the case where each payoff function πi(x, y) fulfils the ordinal com-

plementarity conditions or single-crossing property in any pair of variables (Milgrom and Shanon, 1994).

Indeed, it is easy to construct examples where each payoff fulfills the single-crossing property for all pairs

of variables while the property is not preserved in the reduced-form first-period payoffs (Echenique, 2004).

Supermodularity/increasing differences cannot be weakened to the ordinal single-crossing property. This

happens even though the simultaneous move (“open loop”) game would be an ordinal game of strategic

complementarities and even though the second-period equilibrium is monotone in first-period choices.

A special, albeit common, case has the current payoff πi(x, yi) of player i depending on a (scalar) state

variable yi, that affects only the payoff of player i, and that depends only on accumulated past actions of

the player and xi ∈ Ai(yi) where Ai(yi) is an interval ascending in yi. In this case zi = fi(xi, yi) = xi+ yi

and the conditions on f are automatically fulfilled. This is an instance of the class of simple Markov

games to which we now turn.

2.2 Simple Markov games

We define a simple Markov game as that in which each player has its “own” vector of state variables

(with dimension equal to the vector of actions to simplify notation) and the law of motion is linear and

depends only on “own” variables, that is, each fi(x, y) is linear in (xi, yi). This allows, among others, for

the case where the state variables y are the action profile in the previous period (i.e. fi(xi, yi) = xi or

f(x, y) = x) and the case where the state vector of player i is just the accumulated past actions of the

player fi(xi, yi) = xi + yi.

Corollary 2 (Simple Markov game) Consider the class of simple Markov games. Suppose that for
each i and any period, πi(x, y) is continuous, supermodular in (x, y), and has convex nonnegative (non-

positive) spillovers in xjh and in yjh, j 6= i and all h. Suppose also that Ai(y) is ascending in y. Consider

an extremal MPE where at any period, for given state variables y, for any player i, and action h, x∗ih(y)

is continuous, supermodular (submodular) in y, and convex (concave) in each yjk for any player j and

action k. Then x∗ih(y) is increasing in y, and for any i the value function Vi(y) associated to the extremal

MPE is continuous, supermodular in y, and increasing (decreasing) and convex in each yjk for any player

j 6= i and action k.

Proof. Note first that if f(x, y) is linear then, trivially, fih(x, y) is supermodular (submodular) in
(x, y) and increasing and convex (concave) in each xih and in each yik. From the proof of Proposition 1,

given that fi(x, y) depends only (and linearly) on (xi, yi), it is clear that to preserve supermodularity in

the value function it is only required that πi(x, y) has convex nonnegative (nonpositive) spillovers in the

state variables of rivals: yjh, j 6= i and all h. This in turn implies that the value function is increasing
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(decreasing) and convex in each of the state variables of rivals, but the property need not hold for own

state variables.

Let us extend the result to the case of a strategic substitutes duopoly in simple Markov games.

Corollary 3 (Strategic substitutes duopoly) Consider a simple Markov duopoly in which for all i,
πi(x, y) is continuous, supermodular in (xi,−xj , yi,−yj) (i.e. has increasing differences in any pair of
variables in (xi,−xj , yi,−yj)), j 6= i, and convex nonpositive (nonnegative) spillovers in xjh and in yjh,

j 6= i and all h. Suppose that Ai(y) is ascending in (yi,−yj). Consider an extremal MPE where at

any period, for given states variables y, for any player i and action h, x∗ih(y) is continuous, submodular

(supermodular) in (yi,−yj), and concave (convex) in each yjk, j 6= i and all k. Then for any i, x∗ih(y)

is increasing in yi and decreasing in yj, and the value function Vi(y) associated to the extremal MPE is

continuous, supermodular in (yi,−yj) and decreasing (increasing) and convex in each yjk, j 6= i and all

k.

Proof. The proof follows from Corollary 2 by changing the sign of the action space of one player. For

completeness, a step-by-step argument is given in Appendix A.3 as well as a check in the differentiable

regular case.

For two-stage games let, with some abuse of notation, πi(x, y) denote the total payoff of player i, where

y denotes the profile of actions in the first stage and x ∈ A(y) the profile in the second stage. Then, if

we are only interested in the supermodularity or submodularity of the first-stage value function, we can

obviously do with less assumptions.

Corollary 4 (Two-stage game) Consider a two-stage game and suppose that for each i, πi(x, y) is

continuous, supermodular in (x, y) (i.e. displays increasing differences in any pair of variables), and has

convex nonnegative (nonpositive) spillovers in xjh, j 6= i and all h. Suppose also that Ai(y) is ascending

in y. For a given first-stage action profile y, consider an extremal equilibrium of the second-stage x∗(y)

and assume that for any player i and action h, x∗ih(y) is supermodular (submodular) in y for any h. Let

Vi(y) ≡ πi(x
∗(y), y). Then x∗ih(y) is increasing in y for any h and Vi(y) is supermodular in y.

Proof. This follows as in the proof of Proposition 1(1).

Corollary 5 (Two-stage strategic substitutes duopoly) In the duopoly case suppose that for all i,
πi(x, y) is continuous, supermodular in (xi,−xj , yi,−yj), j 6= i, and convex nonpositive (nonnegative)

spillovers in xjh, j 6= i and all h. Suppose that Ai(y) is ascending in (yi,−yj). For a given first-stage
action profile y, consider an extremal equilibrium of the second stage x∗(y) and assume that for any player

i and action h, x∗ih(y) is submodular (supermodular) in (yi,−yj) for any h. Let Vi(y) ≡ πi(x
∗(y), y).

Then x∗ih(y) is increasing in (yi,−yj) for any h and Vi(y) is supermodular in (yi,−yj).

3 Examples

We consider first two-stage games in Section 3.1 and then finite-horizon games in Sections 3.2 and 3.3.

3.1 Investment followed by market competition

3.1.1 Brand loyalty and price competition

Consider a n-firm differentiated product Bertrand oligopoly where firm i produces a variety and chooses

promotion effort yi at the first stage, which has a positive influence on its (smooth) demand Di(x; yi)

6



where x is the price vector. Suppose also that goods are gross substitutes, ∂Di/∂xj ≥ 0 for j 6= i, and

that demand is downward sloping, ∂Di/∂xi < 0, and ∂Di/∂yi > 0. Let

πi = (xi − ci)Di(x; yi)−Gi(yi)

where ci is the constant marginal cost of firm i and Gi is the (smooth) cost of promotion, with G0i > 0.

Suppose also that there are natural finite upper bounds for xi and yi. Profits πi are strictly supermodular

in (xi, yi) if
∂2πi
∂xi∂yi

= (xi − ci)
∂2Di

∂xi∂yi
+

∂Di

∂yi
> 0.

A sufficient condition for the condition to hold is that ∂2Di/∂xi∂yi ≥ 0 for xi − ci ≥ 0. This amounts to
requiring that promotion effort increases the customers willingness to pay. Furthermore, πi has increasing

differences in ((xi, yi), (x−i, y−i)) if ∂2Di/∂xi∂xj ≥ 0 for j 6= i given that ∂Di/∂xi∂yj = 0, j 6= i.

Under the assumptions made, πi(x, y) has increasing differences in any pair of arguments and ∂πi/∂xj =

(xi − ci)∂Di/∂xj ≥ 0 for xi − ci ≥ 0. Then the first-stage value function at extremal equilibria x∗(y)

is supermodular in y provided that ∂2Di/(∂xj)
2 ≥ 0 (implying that ∂2πi/(∂xj)

2 ≥ 0) and x∗i (y) is

supermodular in y for any i.

The assumptions are fulfilled in the classical linear differentiated product Bertrand competition model

with constant marginal costs when either promotion effort or investment in product quality raises the

demand intercept of the firm exerting the effort (Vives, 1985). In this case, there is a unique price

equilibrium at the second stage that is linear in the first-stage efforts (and, therefore, supermodular).

This result is also obtained when promotion effort increases the willingness to pay for the product of

the firm by lowering the absolute value of the slope of demand (Vives, 1990b). Then the second-stage

equilibrium is nonlinear in y, but still supermodular in y. In Section 3.1.3 we check those properties of

linear demand models.

3.1.2 Capacity investment in Cournot duopoly

Consider a Cournot duopoly in which outputs are substitutes ∂Pi/∂xj ≤ 0 and also strategic substitutes
∂2πi
∂xi∂xj

≤ 0, j 6= i, and yi is the cost-reduction effort by firm i. Let

πi = Pi(x1, x2)xi − Ci(xi, yi)

with ∂2Ci
∂xi∂yi

≤ 0.3 We have that ∂2πi
∂xi∂yi

≥ 0, ∂2πi
∂xi∂yj

= ∂2πi
∂yi∂yj

= 0, and ∂πi/∂xj = xi ∂Pi/∂xj ≤ 0, j 6= i.

According to Corollary 5, cost-reduction investments are strategic substitutes at the first stage provided

that ∂2Pi/(∂xj)2 ≥ 0 and x∗i (y) is submodular in (yi,−yj) for any i.
With linear demand and costs there is a unique equilibrium at the second stage. In Section 3.1.3 we

check such an example. A version of this case was studied by Amir and Wooders (2000). The authors

assumed that the reduced-form payoff function at the first stage is strictly submodular and, as an example,

they provided a linear Cournot duopoly. This follows directly from our approach because of the linearity

of equilibria.

Capacity constraints. The case where a capacity investment yi is made at the first stage that deter-

mines a capacity constraint xi ≤ yi at the market stage can also be accommodated. Under the assumptions

3A sufficient condition to have strategic substitutability (decreasing best responses) is that ∂Pi/∂xj < 0 and logPi is
submodular in (xi, x−i) (see Vives (1999, p. 151)).
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above, suppose that Ci(xi, yi) = fi(yi) with fi increasing for xi ≤ yi and infinite otherwise. In this case,

the action set at the second stage Ai(y) = [0, yi] is ascending in yi and the assumptions for a strategic

substitutes duopoly are fulfilled. The conclusion is that capacity investments at the first stage will be

strategic substitutes.

3.1.3 The case with second-stage linear equilibria

Consider, for illustration purposes, the following duopoly with second-stage quadratic payoffs (a modifi-

cation of the model in Vives (1990b)) for firm i:

πi(x, y) = (αi(yi)− (β + ωi(yi))xi − βxj)xi −Gi(yi)

for j 6= i, i = 1, 2, where αi(yi) > 0, ωi(yi) ∈ (ω,∞) with ω ≥ 0, β + ωi(yi) > 0, and Gi : (ω,∞)→ R++

is smooth increasing and strictly convex with G
0

i > 0 where yi is the first-period effort choice. This effort

can potentially influence a level variable αi (the demand intercept or unit cost) or a slope variable ωi.

We have that ∂πi/∂xj = −βxi and ∂2πi/(∂xj)
2 = 0 for j 6= i. Furthermore, ∂2πi

∂xi∂xj
= −β and

∂2πi
∂xi∂yj

= ∂2πi
∂xj∂yj

= ∂2πi
∂yi∂yj

= 0.

This model encompasses the following cases.

• Bertrand competition with differentiated products and constant marginal production costs (set to
zero for simplicity). Demand for product i is given by αi(yi)− (β + ωi(yi))xi − βxj where xi is the

price set by firm i, β < 0 and ω = 2|β|. We have then that β+ωi > |β| and the own effect dominates
the cross effect in demand.

• Cournot competition with differentiated products and constant marginal production costs (set to
zero for simplicity). The inverse demand for product i is given by αi(yi) − (β + ωi(yi))xi − βxj

where xi is the quantity set by firm i and β > 0. Then we have that β + ωi > β and the own effect

dominates the cross effect in inverse demand. First-stage effort can also be interpreted to reduce the

constant marginal production cost and, therefore, increase αi.

We consider the following two cases.

(1) Investment only has a positive effect on the demand intercept αi(yi) with α
0

i(yi) > 0 (ωi(yi) = ωi

for all yi). Then ∂2πi
∂xi∂yi

= α
0

i > 0.

(2) Investment only has a positive effect on the slope ωi(yi) with ω
0

i < 0 (αi(yi) = αi for all yi). A lower

ωi will mean a better competitive position for player i. Then ∂2πi
∂xi∂yi

= −2xiω
0

i > 0. In the Bertrand

case, effort increases the willingness to pay of consumers while in the Cournot case it expands the

market for the firm.4

For a given y at the second stage, there is a unique linear and interior equilibrium

x∗i =
2(β + ωj)αi − βαj

4(β + ω1)(β + ω2)− β2

for j 6= i, i = 1, 2 provided that 2(β+ωj)αi−βαj > 0, which we assume throughout (see Singh and Vives
(1984)).

4 In this case the model also admits the interpretation of Cournot competition with homogenous product with increasing
(linear) marginal production costs. This interpretation is apparent if we allow the market payoff to be rewritten as (α(yi)−
β(xi + xj))xi − ωi(yi)x2i . Then investment lowers the slope of marginal costs.
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In case (1), the equilibrium xi is linear in y and therefore both supermodular and submodular in

(yi, yj). The assumptions of Corollary 5 are fulfilled in the Bertrand case β < 0 (then ∂πi/∂xj > 0

and ∂2πi/∂xi∂xj > 0) and, therefore, first-stage strategies are strategic complements. Note that x∗i
is increasing in (yi, yj). The assumptions of Corollary 6 are fulfilled in the Cournot case β > 0 (then

∂πi/∂xj < 0 and ∂2πi/∂xi∂xj < 0) and, therefore, first-stage strategies are strategic substitutes. Note

that x∗i is increasing in (yi,−yj).
In case (2), it can be checked that

∂x∗i
∂ωi

< 0,

sign
∂x∗i
∂ωj

= signβ

and

sign
∂2x∗i

∂ωi∂ωj
= sign−β.

As ω
0

i < 0, i = 1, 2 we have that
∂x∗i
∂yi

> 0,

sign
∂x∗i
∂yj

= sign−β

and

sign
∂2x∗i
∂yi∂yj

= sign
½

∂2xi
∂ωi∂ωj

ω
0

iω
0

j

¾
= sign−β.

Again, the assumptions of Corollary 5 are fulfilled in the Bertrand case β < 0. Note that x∗i is

increasing in (yi, yj). In the Cournot case β > 0 and, according to Corollary 6, it would be required that

x∗i be submodular in (yi,−yj) or, equivalently, supermodular in (yi, yj), when in fact
∂2x∗i
∂yi∂yj

< 0. Despite

this, the result holds: x∗i is increasing in (yi,−yj) and the value function is submodular in (yi, yj). (This
should come as no surprise as the conditions stated for the results are sufficient but not necessary.) Indeed,

it can be directly checked that

sign
∂2Vi
∂yi∂yj

= sign−β.

3.2 Dynamic competition with learning or network effects

Consider T -period competition with learning curve or network externalities in a differentiated Cournot

duopoly. Actions are current rates of output. The state variables for period t are the inherited accumulated

production of each firm, so we are in the context of our simple Markov game. We have

πi(x, y) = (Pi(x1, x2)− (c− gi(y)))xi,

where x is the vector of output levels of the firms, c is the constant base marginal cost of production,

gi(·) is the (smooth) learning or network effects curve, increasing in own accumulated sales yi (own

accumulated sales lower costs or expand demand) and increasing (decreasing) in the rival accumulated

sales yj with positive (negative) spillovers. If gi(·) depends only on yi then there are no spillovers.5

We have that ∂πi/∂xj = xi ∂Pi/∂xj ≤ 0, j 6= i (substitute goods), ∂2πi/∂xi∂yi = ∂gi/∂yi ≥ 0, and

∂2πi/∂xi∂yj = ∂gi/∂yj ≤ 0, j 6= i, and strategic output substitutability (∂2πi/∂xi∂xj ≤ 0). Furthermore,
5See Katz and Shapiro (1986) for a network externalities model.
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∂πi/∂yj = xi ∂gi/∂yj ≤ 0 and ∂2πi/∂xi∂yj = ∂gi/∂yj ≤ 0, j 6= i, with nonpositive spillovers. Then the

assumptions of Corollary 3 are fulfilled if ∂2Pi/(∂xj)2 ≥ 0, ∂2gi/(∂yj)2 ≥ 0, and the extremal MPE x∗i (y)

is continuous and submodular in (yi,−yj) for any i. This is the case for the duopoly with a linear demand
system and with linear g (with some parametric restrictions to insure interior solutions).6 When the game

is linear-quadratic, a linear MPE exists. The result, without any need to compute the equilibrium, is that

strategic substitutability in regard to accumulated learning or networks stocks is preserved dynamically

and the output rate of firm i is decreasing in the accumulated production of rival firm j.

3.3 Dynamic competition with adjustment costs

Competition with adjustment costs provides another illustration. The current payoff to player i is

πi(x, y) = ui(x)− Fi(x, y)

where ui(x) is the current profit in the period and Fi(x, y) is the adjustment cost in going from past actions

(y) to current actions (x). This is another instance, therefore, of our simple Markov game. Assume that

Fi(x, x) = 0, i = 1, 2; that is, when actions are not changed, there is no adjustment cost.

Consider a linear-quadratic T -period competition model where each player has a one-dimensional

action and the adjustment cost falls on the action of each player. That is,

Fi(x, y) =
λi
2
(xi − yi)

2,

where xi is the current action and yi the past action of firm i with λi > 0. Let, as in Section 3.1.3,

ui(x) = (αi − (β + ωi)xi − βxj)xi.

The payoff for player i at any stage is therefore

πi(x, y) = (αi − (β + ωi)xi − βxj)xi −
λi
2
(xi − yi)

2,

where x is the current action profile and y the past action profile. The case β < 0 corresponds to price

competition with menu costs, commonly used in macroeconomics, and the case β > 0 corresponds to

quantity competition with production adjustment costs. This finite-horizon linear-quadratic game has a

linear MPE {xti(y)}Tt=1, i = 1, 2 (Kydland, 1975). Note that πi is independent of yj , ∂2πi/∂xi∂yi = λi > 0,

∂2πi/∂xi∂yj = ∂2πi/∂yi∂yj = 0, sign ∂πi/∂xj = sign ∂2πi/∂xi∂xj = sign−β, ∂πi/∂xj = −βxi, and
∂2πi/(∂xj)

2 = 0 for j 6= i. If β < 0, then the assumptions of Corollary 2 are fulfilled and, therefore,

the value function at any stage Vi(y) will be supermodular in y and the equilibrium xi will be increasing

in yi and yj . That is, there will be both contemporaneous strategic complementarity, because Vi(·) is
supermodular, and intertemporal strategic complementarity, because the price charged today by firm i

will be increasing in yesterday’s price of firm j. If β > 0, then the assumptions of Corollary 3 are fulfilled

and, therefore, the value function at any stage Vi(y) will be submodular in (yi, yj) and the equilibrium

xi will be increasing in yi and decreasing in yj . That is, there will be both contemporaneous strategic

substitutability, because Vi(·) is submodular, and intertemporal strategic substitutability as the quantity
set today by firm i will be decreasing in yesterday’s quantity of firm j. In both cases Vi(·) will be convex

6Fudenberg and Tirole (1983) analyzed the game for n-firm and two periods with linear demand for a homogenous product
and linear learning curve. A T -period duopoly version was analyzed by Dasgupta and Stiglitz (1988).
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in yj .

It is worth noting that no computations are needed to obtain the results, as we know the existence of

a linear MPE (which is associated, obviously, to a quadratic value function for each player). As stated

before, even if we have a closed-form for the linear equilibrium, because it is given by a compley recursion of

Riccati equations, typically we can not obtain any comparative statics result. The case β < 0 (Corollary 2)

also applies to a n-firm oligopoly.

In the first case, the static strategic complementarity turns into dynamic strategic complementarity,

whereas in the second case, static strategic substitutability turns into dynamic strategic substitutability.

The linear MPE of the dynamic switching cost model of Beggs and Klemperer (1992) has a similar strategic

flavor to the model with β < 0. In this case, the state variables are the loyal customer bases of every firm.

When the adjustment cost does not fall in the control variable of the player, then things are not so

simple. Suppose that production is costly to adjust and firms compete in prices (β < 0), then

Fi(x, y) =
λi
2
((αi − (β + ωi)xi − βxj)− (αi − (β + ωi)yi − βyj))

2.

We have that ∂2πi/∂xi∂yi = λi(β + ωi)
2 > 0, but ∂2πi/∂xi∂yj = λi(β + ωi)β < 0 and neither of

Corollaries 2 or 3 apply. In this case, we may have intertemporal strategic complementarity or strategic

substitutability.

For example, consider a two-period model with λ1 > 0 and λ2 = 0. At the last period, firm 2 will

price according to its static Bertrand best-reply function as neither firm can manipulate the costs of firm

2. However, an increase in the price of firm 1 in the first period induces a decrease in its output and,

therefore, an increase in its marginal cost in the second period. This moves the best response function

of firm 1 outwards in the second period. The outcome is higher prices for both firms giving a strategic

incentive for firm 1 to raise its price in the first period. The described incentives will be the same whenever

λ2 is close to zero, in which case the second period’s best reply of firm 2 will also be affected by changing

prices in the first period. This, however, does not happen in the symmetric case. In a continuous-time

infinite-horizon differential game symmetric version of this model, Jun and Vives (2004) showed that at

the linear and stable MPE the value function displays strategic complementarities but today’s equilibrium

price for firm i is decreasing in yesterday’s price of firm j. The reason for this, much as in the learning

curve model with price competition, is that a firm wants to make the rival small today in order to induce

it to price softly tomorrow. Indeed, a smaller rival will face a stiff cost of increasing its output. A cut in

price today will therefore bring a price increase by the rival tomorrow.

4 Appendix

4.1 Summary of lattice-theoretic definitions and results

For the convenience of the reader, we include a few definitions and results of lattice methods. More

complete treatments can be found in Vives (1990a; 1999, Ch. 2) and Topkis (1998).

A binary relation ≥ on a nonempty set X is a partial order if ≥ is reflexive, transitive, and antisym-
metric. An upper bound on a subset A ⊂ X is z ∈ X such that z ≥ x for all x ∈ A. A greatest element

of A is an element of A that is also an upper bound on A. Lower bounds and least elements are defined

analogously. The greatest and least elements of A, when they exist, are denoted by maxA and minA,

respectively. A supremum (respectively, infimum) of A is a least upper bound (respectively, greatest lower

bound) and is denoted by supA (respectively, inf A).

11



A lattice is a partially ordered set (X,≥) in which any two elements have a supremum and an infimum.
A lattice (X,≥) is complete if every nonempty subset has a supremum and an infimum. A subset L of

the lattice X is a sublattice of X if the supremum and infimum of any two elements of L also belong to

L. A compact rectangle in Euclidean space is a complete lattice (and a sublattice of the space).

Let (X,≥) and (T,≥) be partially ordered sets. A function f : X → T is increasing if, for x, y in ∈ X,

x ≥ y implies that f(x) ≥ f(y).

A function g : X → R on a lattice X is supermodular if for all x, y in X, g(inf(x, y)) + g(sup(x, y)) ≥
g(x) + g(y). It is strictly supermodular if the inequality is strict for all pairs x, y in X that cannot be

compared with respect to ≥ (i.e. neither x ≥ y nor y ≥ x holds). A function f is (strictly) submodular if

−f is (strictly) supermodular.
Let X be a lattice and T a partially ordered set. The function g : X × T → R has (strictly) increasing

differences in (x, t) if g(x0, t)−g(x, t) is (strictly) increasing in t for x0 > x or, equivalently, if g(x, t0)−g(x, t)
is (strictly) increasing in x for t0 > t. Decreasing differences are defined analogously. If X is a convex

subset of Rn and if g : X → R is twice-continuously differentiable, then g has increasing differences in

(xi, xj) if and only if ∂2g(x)/∂xi∂xj ≥ 0 for all x and i 6= j.

Supermodularity is, in general, a stronger property than increasing differences: if T is also a lattice

and if g is (strictly) supermodular on X×T , then g has (strictly) increasing differences in (x, t). However,

the two concepts coincide on the product of linearly ordered sets: if X is such a lattice, then a function

g : X → R is supermodular if and only if it has increasing differences in any pair of variables. This is the
case in our paper since the spaces considered are compact rectangles in Euclidean space.

Lemma 6 (Topkis (1998, Lemma 2.6.4)) If X is a lattice, fi(x) is increasing and supermodular (sub-

modular) on X for i = 1, . . . , k, Zi is a convex subset of the reals containing the range of fi(x) on X

for i = 1, . . . , k, and g(z1, . . . , zk, x) is supermodular in (z1, . . . , zk, x) on (Πki=1Zi) × X and is increas-

ing (decreasing) and convex in zi on Zi, for i = 1, . . . , k and for all zj, j 6= i, and all x in X, then

g(f1(x), . . . , fk(x), x) is supermodular on X.

We say that a lattice X(t) is ascending in t, with t belonging to a partially ordered set, if t ≥ t0 implies

that for x0 ∈ X(t0) and x ∈ X(t), we have sup(x0, x) ∈ X(t) and inf(x0, x) ∈ X(t0). If X(t) is a compact

rectangle we can write X(t) = [x(t), x(t)]. Then X(t) is ascending in t if both x(·) and x(·) are increasing
in t.

Supermodular game. The game (Ai, πi; i ∈ N) is supermodular if, for all i:

• Ai is a compact lattice in Euclidean space; and

• πi(ai, a−i) is continuous, supermodular in ai, and has increasing differences in (ai, a−i).

Lemma 7 Consider a supermodular game in which payoffs and strategy sets are parameterized by t in a
partially ordered set T : Ai(t) and πi(ai, a−i; t). Then there exist extremal (pure-strategy) equilibria a(t)

and a(t) and, if for each i, Ai(t) is ascending in t and πi has increasing differences in (ai, t), then a(t)

and a(t) are increasing in t.

Proof. See, for example, Topkis (1998, Theorem 4.2.2) or Vives (1999, Section 2.2).
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4.2 Differentiable and regular case

As an illustration let us show in a duopoly case, under the assumptions of Proposition 1 but in the

differentiable case with payoffs twice-continuously differentiable in all arguments and the equilibrium

x∗j (y) regular (interior, stable, and differentiable in y, assume that the constraint set Ai(y) does not bind),

that in the last stage

(1) φi(xi, y) ≡ πi(xi, x
∗
j (y), y) is supermodular in y for any xi; and

(2) Vi(y) ≡ πi(x
∗(y), y) is increasing (decreasing) and convex in each yk.

(1) Proof that φi(xi, y) ≡ πi(xi, x
∗
j (y), y) is supermodular in y for any xi. We have that for j 6= i

∂φi
∂yjk

=
X
h

∂πi
∂xjh
+(−)

∂x∗jh
∂yk
+

+
∂πi
∂yk
+(−)

≥ (≤)0

and for j 6= i and k 6= m

∂2φi
∂yk∂ym

=
X
h

⎡⎢⎣ ∂πi
∂xjh
+(−)

∂2x∗jh
∂yk∂ym
+(−)

+
∂x∗jh
∂yk
+

⎛⎜⎝X
p 6=h

∂2πi
∂xjh∂xjp

+

∂x∗jp
∂ym
+

+
∂2πi
(∂xjh)2

+

∂x∗jh
∂ym
+

+
∂2πi

∂xjh∂ym
+

⎞⎟⎠
⎤⎥⎦

+
X
h

∂2πi
∂yk∂xjh

+

∂x∗jh
∂ym
+

+
∂2πi

∂yk∂ym
+

≥ 0,

The inequalities follow directly from our assumptions: πi(x, y)

• is supermodular in xj ( ∂2πi
∂xjh∂xjp

≥ 0, p 6= h) and in y ( ∂2πi
∂yk∂ym

≥ 0, k 6= m),

• has increasing differences in (yk, ym) ( ∂2πi
∂yk∂ym

≥ 0, j 6= i) and in (xi, y) ( ∂2πi
∂xjh∂ym

≥ 0), and

• has convex nonnegative (nonpositive) spillovers in xjh ( ∂πi∂xjh
≥ (≤)0 and ∂2πi

(∂xjh)2
≥ 0) and in yk and

all h;

• x∗jh(y) is supermodular (submodular) in y (
∂2x∗jh
∂yk∂ym

≥ (≤)0);

and from the fact that
∂x∗jh
∂yk
≥ 0 (this holds at regular and stable equilibria given the assumptions).

(2) Proof that Vi(y) ≡ πi(x
∗(y), y) is increasing (decreasing) and convex in each yk. We have

that for j 6= i
∂Vi
∂yk

=
X
h

∂πi
∂xjh
+(−)

∂x∗jh
∂yk
+

+
∂πi
∂yk
+(−)

≥ (≤)0

(note that ∂πi
∂xih

= 0 for all h) and
∂2Vi
(∂yk)2

=

X
h

⎡⎢⎣ ∂πi
∂xjh
+(−)

∂2x∗jh
(∂yk)2
+(−)

+
∂x∗jh
∂yk
+

⎛⎜⎝X
m

∂2πi
∂xjh∂xim

+

∂x∗im
∂yk
+

+
X
p6=h

∂2πi
∂xjh∂xjp

+

∂x∗jp
∂yk
+

+
∂2πi
(∂xjh)2

+

∂x∗jh
∂yk
+

+
∂2πi

∂xjh∂yk
+

⎞⎟⎠
⎤⎥⎦
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+
X
m

∂2πi
∂yk∂xim

+

∂x∗im
∂yk
+

+
X
p

∂2πi
∂yk∂xjp

+

∂x∗jp
∂yk
+

+
∂2πi
(∂yk)2

+

≥ 0.

The inequalities follow directly from our assumptions: πi(x, y)

• is supermodular in x ( ∂2πi
∂xjh∂xjp

≥ 0, p 6= h; ∂2πi
∂xjh∂xim

, j 6= i) and in (xi, y) ( ∂2πi
∂yk∂xim

≥ 0), (xj , y),
j 6= i ( ∂2πi

∂xjh∂ym
≥ 0), and

• has convex nonnegative (nonpositive) spillovers in xjh ( ∂πi∂xjh
≤ (≥)0 and ∂2πi

(∂xjh)2
≥ 0) and in yk

( ∂πi∂yk
≥ 0 and ∂2πi

(∂yk)2
≥ 0), j 6= i and all h;

• x∗jh(y) is convex (concave) in each yk and all k (
∂2x∗jh
(∂yk)2

≥ (≤)0);

and from the fact that
∂x∗jh
∂yk
≥ 0 for all j (this holds at regular and stable equilibria given the assump-

tions).

4.3 Strategic substitutes duopoly

Proof of Corollary 3. Consider an extremal equilibrium x∗(y) of the game defined for player i by

the payoffs πi(x, y) and strategy set Ai(y) for a given y. Since πi(x, y) is continuous in x the game is

supermodular (considering actions (xi,−xj)) and extremal equilibria exist. In the last period there is no
continuation value and we have that

Vi(y) ≡ πi(x
∗(y), y) = max

xi∈Ai(y)
φi(xi, y),

where φi(xi, y) ≡ πi(xi, x
∗
j (y), y). Note that x

∗
j (y) increases in yj and decreases in yi because πj is super-

modular in xj , has increasing differences in (xj , (−yi, yj)), and Aj(y) is ascending in yj and descending in

yi.

Then it follows that φi(xi, y) ≡ πi(xi, x
∗
j (y), y) has increasing differences in (xi, (yi,−yj)) because:

(i) πi is supermodular in xi and has increasing differences in (xi,−xj) and (xi, (yi,−yj)); (ii) x∗j (y)

increases in yj and decreases in yi for j 6= i.

Furthermore, we have that φi(xi, y) is supermodular in yi and in (yi,−yj) for any xi. This follows

because each −x∗jh(·) is supermodular (submodular) and increasing in (yi,−yj); πi(xi, xj , y) is supermod-
ular in (−xj , (yi,−yj)) for any xi, and increasing (decreasing) and convex in −xjh, j 6= i, for all h, y

(see Lemma 6 in Section 4.1and a differentiable version below). We conclude that Vi(y) is supermodular

in yi and in (yi,−yj) as supermodularity/increasing differences are preserved under the maximization
operation.

Vi(y) is decreasing (increasing) in yj because πi is decreasing (increasing) in xjh and in yjh, j 6= i, and

we know that x∗jh(y) is decreasing in yi and increasing in yj . Also, Vi(y) is convex in each yjh because πi
has increasing differences in all pairs of variables, πi is decreasing (increasing) and convex in xjh and in

yjh, j 6= i, and x∗ih(y) is increasing in yi and decreasing in yj and convex in each yjk, j 6= i and all k.

Consider now a generic period before the last and, for given states variables y, a continuation extremal

MPE with continuation value function Wi(z) where z = f(x, y) = (f1(x1, y1), f2(x2, y2)), with each fi (·)
linear, and let the current extremal equilibrium of the continuation game be x∗(y). Suppose that Wi(z)

is continuous, supermodular in (zi,−zj) and decreasing (increasing) and convex in each zjh, j 6= i. It

follows that ψi(x, y) ≡ πi(x, y) + Wi(f(x, y)) is supermodular in xi and has increasing differences in
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(xi,−xj), (yi,−yj) and in (xi, (yi,−yj)), and is decreasing (increasing) and convex in each xjh, j 6= i and

all h, and in in yj . Therefore the value function

Vi(y) ≡ πi(x
∗(y), y) +Wi(f(x

∗(y), y))

will be supermodular in (yi,−yj) provided that the extremal equilibrium x∗ih(y) is submodular (super-

modular) in (yi,−yj), and it will be decreasing (increasing) and convex in each yjh, j 6= i and all h.

We have the desired result by backwards induction.

For the benefit of the reader, let us now show in a duopoly case, under the assumptions of Corollary 4

but in the differentiable case with payoffs twice-continuously differentiable in all arguments and the equi-

librium x∗j (y) regular (interior, stable and differentiable in y, assume that the constraint set Ai(y) does

not bind), that

1. φi(xi, y) ≡ πi(xi, x
∗
j (y), y) is supermodular in yi and in (yi,−yj) for any xi; and

2. Vi(y) ≡ πi(x
∗(y), y) is decreasing (increasing) and convex in each yjh, j 6= i.

(1) Proof that φi(xi, y) ≡ πi(xi, x
∗
j (y), y) is supermodular in (yi,−yj) for any xi. We have that

for j 6= i
∂φi
∂yjk

=
X
h

∂πi
∂xjh
−(+)

∂x∗jh
∂yjk
+

+
∂πi
∂yjk
−(+)

≤ (≥)0

and for j 6= i and k 6= m

∂2φi
∂yjk∂yjm

=
X
h

⎡⎢⎣ ∂πi
∂xjh
−(+)

∂2x∗jh
∂yjk∂yjm
−(+)

+
∂x∗jh
∂yjk
+

⎛⎜⎝X
p 6=h

∂2πi
∂xjh∂xjp

+

∂x∗jp
∂yjm
+

+
∂2πi
(∂xjh)2

+

∂x∗jh
∂yjm
+

+
∂2πi

∂xjh∂yjm
+

⎞⎟⎠
⎤⎥⎦

+
X
h

∂2πi
∂yjk∂xjh

+

∂x∗jh
∂yjm
+

+
∂2πi

∂yjk∂yjm
+

≥ 0,

and for j 6= i

∂2φi
∂yjk∂yim

=
X
h

⎡⎢⎣ ∂πi
∂xjh
−(+)

∂2x∗jh
∂yjk∂yim

+(−)

+
∂x∗jh
∂yjk
+

⎛⎜⎝X
p6=h

∂2πi
∂xjh∂xjp

+

∂x∗jp
∂yim
−

+
∂2πi
(∂xjh)2

+

∂x∗jh
∂yim
−

+
∂2πi

∂xjh∂yim
−

⎞⎟⎠
⎤⎥⎦

+
X
h

∂2πi
∂yjk∂xjh

+

∂x∗jh
∂yim
−

+
∂2πi

∂yjk∂yim
−

≤ 0.

The inequalities follow directly from the smooth version of our increasing differences assumptions:

πi(x, y)

• is supermodular in xj ( ∂2πi
∂xjh∂xjp

≥ 0, p 6= h) and in yj ( ∂2πi
∂yjk∂yjm

≥ 0, k 6= m),

• has increasing differences in (xi,−xj), (yi,−yj) ( ∂2πi
∂yjk∂yim

≤ 0, j 6= i) and (xi, (yi,−yj)), (xj , (−yi, yj)),
j 6= i ( ∂2πi

∂xjh∂yjm
≥ 0, ∂2πi

∂xjh∂yim
≤ 0), and
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• has convex nonpositive (nonnegative) spillovers in xjh ( ∂πi∂xjh
≤ (≥)0 and ∂2πi

(∂xjh)2
≥ 0) and in yjh,

j 6= i and all h;

• x∗jh(y) is submodular (supermodular) in yj (
∂2x∗jh

∂yjk∂yjm
≤ (≥)0) and supermodular (submodular) in

(yi, yj) (
∂2x∗jh

∂yjk∂yim
≥ (≤)0, j 6= i);

and from the fact that
∂x∗jh
∂yjk

≥ 0 and ∂x∗jh
∂yim

≤ 0, j 6= i (this would hold at regular and stable equilibria

given the assumptions).

(2) Proof that Vi(y) ≡ πi(x
∗(y), y) is decreasing (increasing) and convex in each yjk, j 6= i. We

have that for j 6= i
∂Vi
∂yjk

=
X
h

∂πi
∂xjh
−(+)

∂x∗jh
∂yjk
+

+
∂πi
∂yjk
−(+)

≤ (≥)0

(note that ∂πi
∂xih

= 0 for all h) and
∂2Vi
(∂yjk)2

=

X
h

⎡⎢⎣ ∂πi
∂xjh
−(+)

∂2x∗jh
(∂yjk)2

−(+)

+
∂x∗jh
∂yjk
+

⎛⎜⎝X
m

∂2πi
∂xjh∂xim

−

∂x∗im
∂yjk
−

+
X
p6=h

∂2πi
∂xjh∂xjp

+

∂x∗jp
∂yjk
+

+
∂2πi
(∂xjh)2

+

∂x∗jh
∂yjk
+

+
∂2πi

∂xjh∂yjk
+

⎞⎟⎠
⎤⎥⎦

+
X
m

∂2πi
∂yjk∂xim

−

∂x∗im
∂yjk
−

+
X
p

∂2πi
∂yjk∂xjp

+

∂x∗jp
∂yjk
+

+
∂2πi
(∂yjk)2

+

≥ 0.

The inequalities follow directly from the smooth version of our assumptions: πi(x, y)

• is supermodular in xj ( ∂2πi
∂xjh∂xjp

≥ 0, p 6= h),

• has increasing differences in (xi,−xj) ( ∂2πi
∂xjh∂xim

≤ 0, j 6= i) and in (xi, (yi,−yj)) ( ∂2πi
∂yjk∂xim

≤ 0),
(xj , (−yi, yj)), j 6= i ( ∂2πi

∂xjh∂yjm
≥ 0, ∂2πi

∂xjh∂yim
≤ 0), and

• has convex nonpositive (nonnegative) spillovers in xjh ( ∂πi∂xjh
≤ (≥)0 and ∂2πi

(∂xjh)2
≥ 0) and in yjh

( ∂πi∂yjk
≤ 0 and ∂2πi

(∂yjk)2
≥ 0), j 6= i and all h;

• x∗jh(y) is concave (convex) in each yjk, j 6= i and all k (
∂2x∗jh
(∂yjk)2

≤ (≥)0);

and from the fact that
∂x∗jh
∂yjk

≥ 0 and ∂x∗im
∂yjk

≤ 0, j 6= i (this holds at regular and stable equilibria given

the assumptions).
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