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Abstract

This paper develops a multi-attribute competition model for procurement of short life cycle products. In
such an environment, the buyer installs dedicated production capacity at the suppliers before the demand is
realized. Final production orders are decided after demand materializes. Of course, the buyer is reluctant to
bear all the capacity and inventory risk, and thus signs flexible contracts with several suppliers. We model
the suppliers’ offers as option contracts, where each supplier charges a reservation price per unit of capacity,
and an execution price per unit of delivered supply. These two parameters illustrate the trade-off between
total price and flexibility of the contract, and are both important to the buyer. We model the interaction
between the suppliers and the buyer as a game in which the suppliers are the leaders and the buyer is the
follower. Specifically, suppliers compete to provide supply capacity to the buyer and the buyer optimizes its
expected profit by selecting one or more suppliers. We characterize the suppliers’ equilibria in pure strategies
for a class of customer demand distributions. In particular, we show that this type of interaction gives rise
to cluster competition. That is, in equilibrium, suppliers tend to be clustered in small groups of two or three
suppliers each, such that within the same group all suppliers use similar technologies and offer the same type
of contract. Finally, we show that in equilibrium, the supply chain inefficiencies, i.e., the loss of profit due to
competition, are in general at most 25% of the profit of a centralized supply chain, for a wide class of demand
distributions.

1 Introduction

The introduction of new products is usually associated with uncertain sales forecasts. When the

product life-cycle is short, firms usually have limited opportunities to delay decisions until the time

accurate forecasts are available. For instance, it would be ideal to delay decisions about production

quantities until the beginning of the selling season, when initial sales have been observed and thus

sales expectations are more robust. However, if production lead times are long, this is obviously

not possible, and thus firms must take capacity and inventory risks at product launch. In industries

like electronics or fashion retailing, managing these risks appropriately is critical for the long-term

survival of firms.

One way to reduce the financial impact of these risks is by adjusting supply costs with sales

realizations. This is done through flexible contracts which allow scaling up production volume and

costs with sales volume and revenues. The typical example of a flexible contract is the option

contract. This contract is characterized by two parameters, a capacity reservation fee and an

execution fee. For each unit of capacity installed by the supplier, the buyer pays in advance the

reservation fee. When demand is realized, the buyer decides how many units to order, and for each
1Research supported in part by the Center of eBusiness at MIT, ONR Contracts N00014-95-1-0232 and N00014-01-1-0146, NSF

Contracts DMI-9732795, DMI-0085683 and DMI-0245352.
2IESE Business School, Av. Pearson 21, 08034 Barcelona, Spain.
3Operations Research Center, MIT, 77 Mass. Ave., Cambridge MA 02139, USA.
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unit pays the execution fee. Thus, if demand is smaller than expected, the buyer pays execution fee

only on realized demand, and not on the entire capacity installed.

Contracts similar to option contracts are common in industries such as textiles, plastics or semi-

conductors manufacturing. In some cases, such contracts are disguised under the name of buy-back

contracts, which are equivalent to an option, as in newspaper or book distribution. Specifically, in

a buy-back contract, the cost of the component and the amount of the refund for returned items

are specified; this corresponds to an option with reservation price equal to the total cost minus

the refund, and an execution price equal to the refund. It is well known, see Pasternack [15], that

buy-back contracts can be beneficial to both the buyer and the supplier, since they can coordinate

the supply chain.

As shown by Mart́ınez-de-Albéniz and Simchi-Levi [13], one way for a buyer to better manage its

risks is to simultaneously sign several option contracts with a number of suppliers. This allows the

buyer to take advantage of the relative cost and flexibility of the different contracts. For instance,

it can sign a low-cost contract with little flexibility for the most certain portion of the demand, and

sign a more expensive but flexible contract for the more volatile part of sales. An illustration of

this strategy can be found in apparel retailing, where a retailer may place a large order in China,

at a low price, and at the same time, reserve some capacity locally and have the option to scale up

production if demand is high.

Evidently, this purchasing strategy can force changes in the way suppliers compete in the mar-

ketplace. Clearly, flexibility and price are the two attributes that the buyer cares about, and

suppliers should take note of it. The objective of this paper is precisely to analyze the suppliers’

pricing strategy when they are competing through price and flexibility. Specifically, our objective is

to characterize option contracts offered by competing suppliers in equilibrium.

For this purpose, we focus on products with short life cycles and consider a single period model

with many suppliers and a single buyer purchasing a single component. The sequence of events is

as follows. First, each supplier offers an option contract to the buyer, with a given reservation and

execution fee. After receiving all the competing bids, the buyer reserves capacity with some or all

the suppliers. Finally, after demand is realized, the buyer requests deliveries from each supplier, up

to the installed capacity.

Of course, a supplier needs to take into account the competitors’ bids when offering its preferred

contract. A given supplier can thus undertake two main actions to become more competitive: either

lower the reservation price or lower the execution price. The trade-off is clear. A supplier that

charges mainly a reservation fee (and a small execution fee) competes on price but not flexibility.

On the other hand, a supplier that charges mainly an execution fee (and a small reservation fee)

typically emphasizes flexibility and not price.

Evidently, the suppliers bids depend on their cost structure. We assume that there are two types

of costs for each supplier.
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• A reservation cost is associated with setting up the line and making preparations for production.

We assume that this reservation cost has a linear or per-unit cost structure, corresponding to

the acquisition of special machinery or specialized labor, that scales up with the level of capacity

requested by the buyer.

• An execution cost is then paid when the supplier finalizes production and ships the components

after it receives the firm and final order from the buyer. This additional work has also a per-unit

cost structure, corresponding to labor, material and logistics cost.

Different suppliers may have different costs for reserving capacity and delivering supply, depend-

ing on the type of technology (machinery) and their geographical location (labor, transportation).

In addition, the cost structure of each firm may also be determined by its production strategy: a

company that buys dedicated machines early on incurs most of the cost as a reservation cost; a

company that leases these same machines later on has the ability to pass the corresponding cost as

execution cost.

The supplier cost model is consistent with situations where the capacity installed under contract

is dedicated to the buyer, and not shared with other firms. For instance, we are familiar with a large

Taiwanese contract manufacturer that, upon signing a supply contract with a buyer, typically sets

up a dedicated line for that buyer, in advance of the production season. The reservation cost for the

dedicated line clearly increases with the capacity level. After demand is realized, the buyer, a PC

manufacturer in this case, decides a final order quantity, up to the capacity, and this is produced

and shipped by the contract manufacturer. The cost associated with production and shipping is the

execution cost defined earlier. As a matter of fact, this PC manufacturer uses another supplier for

the same component, with presumably a different cost structure.

Our objective in this paper is to understand how these suppliers compete. The model captures

the multiple cost dimensions of the suppliers, i.e., reservation and execution costs, who compete

and differentiate on their prices, i.e., reservation and execution prices.

The paper describes the market equilibrium outcomes of the suppliers’ option pricing game. We

characterize the suppliers’ equilibria in pure strategies for a class of customer demand distributions.

Interestingly, this model is an extension of the Bertrand price competition model to two dimensions.

An important result in one dimension is that, in equilibrium, there is a unique supplier, the least

costly supplier, that captures all the orders at a market price that is between its cost and the cost

of the second most competitive supplier. We show that this is not the case when two attributes are

important to the buyer. Indeed, we demonstrate that in equilibrium, a variety of suppliers coexists,

and these suppliers offer different prices. We call this cluster competition, since suppliers tend to

cluster in small groups of two or three suppliers each, such that within the same group all suppliers

use similar technologies and offer the same type of contract.

Intuitively, we have shown that the best strategy of each supplier is to set a price very similar to
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some other supplier, while making sure that the share of capacity “stolen” from that supplier yields

profit. Thus, the supplier does not simply undercut this other supplier, but instead skims carefully

the type of capacity (e.g., with higher or lower probability of execution) that it wants to capture.

In addition, we show that in equilibrium, the supply chain inefficiencies, i.e., the loss of profit

due to competition, are in general at most 25% of the first-best, i.e., the profit of a centralized

supply chain, for a wide class of demand distributions. Finally, supplier competition through option

contracts is particularly attractive to the buyer, since it may allocate more profit to the buyer than

an Expected Vickrey-Clark-Groves (EVCG) mechanism, see Schummer and Vohra [17].

We start by reviewing in Section 2 the different streams of literature relevant to our research and

present the model in Section 3. We then analyze the buyer’s behavior in Section 4 and the suppliers’

strategies in Section 5. This leads, in Section 6, to the study of the equilibria of the negotiation

process. Finally, we conclude with managerial insights in Section 7.

2 Literature review

Our starting point for this research is the recent paper by Mart́ınez-de-Albéniz and Simchi-Levi [13].

In their work, they develop a multi-period framework in which buyers optimize their purchasing

strategy by carefully balancing price and flexibility. In particular, in their single period version,

they provide a closed form expression for the amounts of option capacities that a buyer purchases

from a pool of suppliers. We apply this result in the analysis of the behavior of the suppliers in such

a setting, where competition is carried through two dimensions: price and flexibility, or equivalently

reservation and execution prices.

We relate this research to the literature on supply contracts; for a review see Cachon [4] or

Lariviere [11]. In particular, some papers study option contracts, e.g., Barnes-Schuster et al. [1] or

Eppen and Iyer [7]. More relevant to our model are papers that analyze the behavior of suppliers in

offering options to a buyer, the prelude to introducing competition between suppliers. The existing

literature usually models a sequential game à la Stackelberg, where a single buyer is the follower and

a single supplier is the leader. Typically, competition in such models is introduced by a spot market.

This spot market is the buyer’s sourcing alternative and a potential client for the supplier. The

focus is on finding conditions for which both players are willing to sign a contract and determining

option prices as the outcome of the negotiation process. Our paper moves from the traditional

models of competition through dual sourcing, i.e., single supplier offering an option contract versus

spot market, to a model of pure competition between suppliers offering different types of options.

The first publication in this stream of literature is by Wu et al. [22]. Motivated by electricity

markets, they derive option prices as a function of the costs of the system, the spot price distribution

and the buyer’s utility. Later, Spinler et al. [18] and Golovachkina and Bradley [10] analyze similar

models. Building on this, a multi-sourcing version is presented in Wu and Kleindorfer [20]. In
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this work, suppliers are characterized by an execution unit cost and a total capacity, and offer

option contracts to the buyer. Wu and Kleindorfer derive Bertrand-like results, where competitive

suppliers contract with the buyer up to their available capacity. Wu et al. [21] expand this model

by proposing a capacity investment game between the suppliers, where, after installing capacity,

the short-run price competition presented in Wu and Kleindorfer [20] takes place.

Interestingly, Wu and Kleindorfer [20] assume the same cost structure as ours, but suppliers

make capacity investments before price competition, there is a random spot price and the buyer

has a deterministic utility (which implies a deterministic demand function); in our model, on the

other hand, capacity investments follow pricing decisions, there is no spot market but a random

demand, and suppliers are uncapacitated. These differences lead to significantly different equilibrium

characteristics. Specifically, Wu and Kleindorfer show that the buyer follows a greedy contracting

rule, i.e., purchases capacity from the suppliers with the lowest overall price, up to capacity. Thus,

the suppliers’ equilibrium is such that all suppliers active in the contracting market offer an identical

overall price. Potentially, if all suppliers have infinite capacity, Wu and Kleindorfer imply that a

single supplier will be active in the contract market. Thus, deterministic utility leads to single

sourcing, and multi-sourcing comes from having capacitated suppliers. In comparison, uncertainty in

demand in our model leads to multi-sourcing, since multi-sourcing helps manage demand uncertainty

in a cheaper way than single sourcing.

Another related stream of the literature concentrates on analyzing multi-attribute auctions. This

research is quite recent and follows the development of online auctions in B2B markets. Typically,

the objective is to design the auction mechanism so as to reach an optimal outcome. An optimal

outcome may be defined as social efficiency or profit maximization from the auctioneer’s point of

view (e.g., Myerson [14] in a one-dimensional auction). Usually, there is uncertainty in the suppliers’

cost structure, and hence the design of the auction is done using probabilistic distributions of costs.

In our paper, however, the costs are assumed to be deterministic and known to all the players;

hence, our modeling approach is very different than the approach in this group of papers.

In this line of research, various authors have studied the winner determination problem, where

a single supplier is awarded all the orders. This differs from our formulation where all the suppliers

may potentially be selected for part of the procurement. For instance, Beil and Wein [2], following

Che [5], present a multi-attribute Request For Quotation (RFQ) process where the buyer declares

a scoring rule and chooses a winner among many suppliers, the one that obtains the highest score

for the declared rule.

In a different direction, some research has been done on mechanism design where many bid-

ders can be awarded orders at the same time. For instance, Schummer and Vohra [17] analyze a

class of two-dimensional option auction mechanisms for a set of suppliers confronted with a single

buyer. Their formulation is similar to our model but focuses on designing an efficient procurement

mechanism where the suppliers have the incentive to truthfully reveal their costs. Because suppli-
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ers submit their true costs, their paper does not directly address competition between suppliers. In

comparison, we analyze a supplier competition model where suppliers are paid what they bid, under

complete information.

3 Assumptions and Notation

Consider a single buyer purchasing a component that is used in the manufacturing of the final

product. This component may be obtained from a variety of suppliers. We make two assumptions

regarding selling price and demand observed by the buyer.

Assumption 1 The buyer sells to end customers at a given unit price p fixed in advance.

Assumption 2 The total customer demand D follows a distribution defined over an interval [d, d] ⊂
[0,∞]. The c.d.f. of the demand F (·) is strictly increasing in [d, d]. We assume that F (·) is a

continuous and differentiable function over (d, d). Define f(·) = F ′(·) and F (·) = 1− F (·).

The buyer’s objective is to maximize expected profit by optimally selecting the amount of ca-

pacity to reserve from each supplier.

We denote by N the number of suppliers in the market. The suppliers’ cost structure is assumed

to consist of two parts. Each supplier incurs a fixed unit cost for reserving capacity, fi, i = 1, . . . , N

that can be seen as the unit cost of installing dedicated capacity in advance of production. In

addition, the suppliers pay a unit cost, ci, i = 1, . . . , N, for each unit executed by the buyer,

which corresponds to the cost of finalizing the component plus transportation. These costs differ

from supplier to supplier and may be explained by the use of different technologies or management

practices. Without loss of generality, we assume that c1 ≤ . . . ≤ cN .

Each supplier offers an option contract to the buyer. Such a contract is defined by two parameters,

v ≥ 0, the reservation price, and w ≥ 0, the execution price. These values are determined by the

supplier based on its cost structure as well as on whether the supplier emphasizes price or flexibility.

Specifically, supplier i, i = 1, . . . , N, takes position in the market by offering options at a reservation

price vi and an execution price wi.

Given the suppliers’ offerings, the buyer specifies the amount of capacity to reserve with each

supplier4. At the time the buyer executes a contract with a supplier, it can purchase any amount

q, where q is no more than the reserved capacity with that supplier. Thus, the profit of supplier i,

i = 1, . . . , N, is (vi − fi)xi + (wi − ci)qi when a buyer reserves xi units of capacity and executes qi

units, 0 ≤ qi ≤ xi. The objective of the suppliers is to maximize their expected profit by selecting

(wi, vi) optimally.
4It can be shown that the suppliers have no incentive to build more than the amount specified in the contracts, since any

additional capacity, for which no reservation fee is received, would fetch negative profit.
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We analyze a two-stage model. In the first stage all the suppliers submit bids that are defined

by (wi, vi), i = 1, . . . , N . At the same time, and based on these bids, the buyer decides on the

amount of capacity to reserve with each supplier. In the second period, demand is realized and the

buyer decides the amount to execute from each contract. If total capacity is not enough, unsatisfied

demand is lost.

This is a game in which the suppliers are first-movers and the buyer reacts myopically to the

suppliers’ bids. Thus, there are multiple players that compete knowing the reaction of the buyer.

Suppliers have complete visibility on the buyer’s decision making process, as well as on the demand

distribution. Therefore, given any N pairs (wi, vi), i = 1, . . . , N , each supplier can figure out

the amount of capacity that the buyer would reserve with each individual supplier as well as the

distribution of the amount of supply executed (requested) by the buyer.

We assume that the suppliers submit sealed bids simultaneously. Thus, this is a one-shot game.

We are interested in determining the equilibria of this game in pure strategies, i.e., the N -uples

(wi, vi), i = 1, . . . , N , where no supplier has an incentive to unilaterally change its bid.

Information-wise, we assume that the cost parameters of the suppliers are known to each other.

Indeed, in practice, most firms have a rather precise idea on the type of technology used by each

one of their competitors. This is a strong assumption, which is found as well in the asymmetric

Bertrand or Hotelling models, for instance.

4 The Buyer’s Procurement Strategy

Mart́ınez-de-Albéniz and Simchi-Levi [13] present a general framework for supply contracts in which

portfolios of options can be analyzed and optimized. In this section, we review the framework in

the context of a single period environment.

Consider a buyer facing N different options with terms (wi, vi), i = 1, . . . , N . Mart́ınez-

de-Albéniz and Simchi-Levi show that the buyer’s expected profit is concave in the quantities

(x1, . . . , xN ) purchased. Without loss of generality, assume that w1 ≤ . . . ≤ wN ≤ p. Define

wN+1 = p, vN+1 = 0 and qN+1 the amount of lost sales, which creates an opportunity cost of

wN+1qN+1. Define also, the execution cost, given a demand realization d,

C(x, d) =
N+1∑

i=1

vixi+ min
N+1∑

i=1

wiqi

subject to





0 ≤ qi ≤ xi i = 1, . . . , N,

0 ≤ qN+1,
N+1∑

i=1

qi = d

Observe that the execution policy of the buyer (after demand is realized) is to use first the option
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contracts with lower execution costs. Hence, the buyer’s profit is Π(x,D) = pD − C(x,D). Thus,

the expected profit is Π(x) = pE[D]− E[C(x, D)].

Let y0 = 0 and

yi = x1 + . . . + xi for i = 1, . . . , N. (1)

Then, V (y) = Π(x) satisfies for i = 1, . . . , N , see [13],

dV

dyi
(y) = (vi+1 − vi) + (wi+1 − wi)Pr[D ≥ yi]. (2)

Equation (2) thus provides the structure of the buyer’s optimal portfolio which is determined

by the c.d.f. of customer demand. One can observe that the marginal value of increasing yi while

keeping the rest fixed (i.e., increasing xi and decreasing xi+1, in fact replacing capacity installed at

i by capacity at i+1) is equal to the increase in reservation cost, vi+1−vi per unit, plus the increase

in average execution cost, (wi+1 − wi)Pr[D ≥ yi] per unit. Under Assumption 2, when there are

no identical bids from the suppliers, the profit is a strictly concave function of (y1, . . . , yN ) defined

over the set

P =
{

(y1, . . . , yN ) ∈ RN
∣∣∣0 ≤ y1 ≤ . . . ≤ yN

}
(3)

Strict concavity implies that the optimal solution is unique. Thus, in the game analyzed in this

paper, the leaders know exactly how the follower behaves.

To characterize the optimal portfolio, (x∗1, . . . , x
∗
N ), we need the following definitions.

Definition 1 Supplier i is called active if x∗i > 0. Otherwise, it is called inactive.

Definition 2 Given a set of t different pairs {(a1, b1), . . . , (at, bt)} with a1 ≤ . . . ≤ at, the winning

set is the minimal subset S = {i1, . . . , ik} of these points such that:

(a) ai1 ≤ . . . ≤ aik ;

(b) for 1 ≤ i < i1, bi − bi1 ≥ −(ai − ai1);

(c) for j = 2, . . . , k, for ij−1 < i < ij, bi − bij ≥ −
(

bij−1 − bij

aij − aij−1

)
(ai − aij );

(d) for ik ≤ i ≤ t, bi ≥ bik .

i1, . . . , ik are called winning points among the t pairs. Also, the lower envelope is the curve Z(a,b)(·)
defined as follows

Z(a,b)(u) =





bi1 − (u− ai1) for u ≤ ai1

bi2 −
(

bi1 − bi2

ai2 − ai1

)
(u− ai2) for ai1 ≤ u ≤ ai2

...

bik −
(

bik−1
− bik

aik − aik−1

)
(u− aik) for aik−1

≤ u ≤ aik

bik for aik ≥ u,

(4)
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These definitions, together with Equation (2), are used to characterize the optimal portfolio

explicitly, as is done in the next proposition.

Proposition 1 Supplier i, i = 1, . . . , N , is active if and only if i is a winning point of {(w1, v1),

. . . , (wN+1, vN+1)}.

All the proofs are presented in the appendix.
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Figure 1: Illustration of active and inactive bids.

The winning points, i.e., all the active suppliers, can be determined graphically, see Figure 1.

Plot the pairs (wi, vi) in a graph with the wi in the x coordinate and the vi in the y coordinate. Add

also the point (p, 0). Determine the convex hull of the points, and in particular find the extreme

points on the lower envelope as defined in Definition 2; these are the points i1 < . . . < ik.

Hence, the lower envelope is piecewise linear and convex. The segments have increasing slopes

or equivalently decreasing negative slopes, that is,

1 >
vi1 − vi2

wi2 − wi1

> . . . >
vik−1

− vik

wik − wik−1

> 0.

The buyer’s optimal strategy is to include only suppliers on the lower envelope that form segments

with negative slopes between 0 and 1. This implies that vi1+wi1 > . . . > vik+wik and vi1 > . . . > vik .

With these definitions, and recalling y0 = 0, the optimal portfolio is defined by

y∗i =





F
−1

(
vij − vij+1

wij+1 − wij

)
if i = ij , j = 1, . . . , k − 1,

y∗i−1 for all others.
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The vector x∗ follows directly from y∗. In particular x∗i = 0 for i different than i1, . . . , ik.

Recalling Equation (2), this portfolio structure yields that the buyer reserves capacity with low

execution cost w and high reservation cost v to cover the demand with higher realization probability;

and uses capacity with high execution cost and low reservation cost to cover the right-tail of the

demand.

5 The Suppliers’ Behavior

Given that the buyer uses a portfolio approach as described in the previous section, each supplier

will set its reservation and execution price to maximize its expected profit, taking into account the

behavior of other suppliers.

Consider the decision of supplier i, i = 1, . . . , N. It is confronted by bids from other suppliers. Let

(w−i,v−i) be the vector representing all other bids with the additional point (wN+1 = p, vN+1 = 0).

We assume these bids to be fixed in this section, and characterize the best bidding strategy of the

supplier in response to them.

Given the bids in the vector (w−i,v−i), we can identify the buyer’s optimal procurement strategy.

Assume that, within these bids, there are k ≤ N active suppliers, indexed from 1 to k, with

wi1 ≤ . . . ≤ wik (one of the suppliers might be the dummy supplier with parameters (p, 0)). The

buyer’s best procurement strategy, excluding the bid of i for the moment, is to set




y−i
ij

= F
−1

(
vij − vij+1

wij+1 − wij

)
j = 1, . . . , k − 1,

y−i
ik

= F
−1(0).

(5)

If supplier i places a bid (wi, vi), the buyer’s optimal solution may change to take this bid into

account. Of course, suppliers that were not active before are not going to be active with the new

bid from supplier i. However, it is entirely possible that some suppliers may become inactive when

supplier i enters with the bid (wi, vi). Finally, supplier i may capture zero capacity if its bid makes

it inactive. Clearly, in this case, if supplier i is inactive, we can withdraw it from the pool of bids and

consequently the capacities allocated to the other suppliers remain unchanged. This happens when

(wi, vi) is above the lower envelope which is described by the function Z(w−i,v−i)(·) in Definition 2.

Thus, when vi ≥ Z(w−i,v−i)(wi), supplier i is inactive and its profit is Π = 0. We define this bidding

region which makes i inactive as

AOUT =
{

(w, v) ∈ R2
+|v ≥ Z(w−i,v−i)(w)

}
.

If supplier i’s bid is not in that region, then supplier i becomes active. Adding bid (wi, vi) to the

rest of the bids may change the convex hull of the points in two different ways:
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• Supplier i becomes the first active supplier, i.e., there exist h ∈ {1, . . . , k} such that suppliers

i, ih, . . . , ik−1 are active and suppliers i1, . . . , ih−1 are inactive. We define this region as A0h.

A0h =





(w, v) ∈ R2
+

∣∣∣∣∣∣∣∣∣∣∣

v − vi1 ≤ −(w − wi1)

v − vih ≤ −
(

vih−1
− vih

wih − wih−1

)
(w − wih) (only if h > 1)

v − vih ≥ −
(

vih − vih+1

wih+1
− wih

)
(w − wih)





(6)

• Supplier i is not the first active supplier, i.e., there exist l ∈ {1, . . . , k − 1} and h ∈ {1, . . . , k},
h > l, such that suppliers i, i1, . . . , il, ih, . . . , ik are active and il+1, . . . , ih−1 inactive. We define

this region as Alh.

Alh =





(w, v) ∈ R2
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v − vil ≥ −
(

vil−1
− vil

wil − wil−1

)
(w − wil)

(or v − vi1 ≥ −(w − wi1) if l = 1)

v − vil ≤ −
(

vil − vil+1

wil+1
− wil

)
(w − wil)

v − vih ≤ −
(

vih−1
− vih

wih − wih−1

)
(w − wih)

v − vih ≥ −
(

vih − vih+1

wih+1
− wih

)
(w − wih)





(7)

These regions are illustrated in Figure 2. Intuitively, a bid in region Alh implies that supplier i

forces suppliers il+1, . . . , ih−1 out of the market, i.e., these suppliers receive zero capacity allocation.

5.1 The supplier’s profit

The capacity allocated by the buyer to supplier i, xi, if i bids in Alh, l > 0, is xi = yi+ − yi−
where yi+ and yi− are given by the following set of equations5. We drop the sub-index i to simplify

notation, and use l, h instead of il, ih.

F (y−) =
vl − v

w − wl
and F (y+) =

v − vh

wh − w
. (8)

The case of l = 0 is special, since y− = 0 by construction. Hence, in that case,

y− = 0 and F (y+) =
v − vh

wh − w
.

The expected profit of supplier i in this case is thus

Π = (v − f)(y+ − y−) + (w − c)E
[
min

{
max(D − y−, 0), y+ − y−

}]
,

where the first part is the profit made on reserving capacity, and the second part the expected

execution profit (execution occurs for any demand D higher than y−, up to the reserved capacity).
5Since (w, v) ∈ Alh, one must keep in mind that (y−, y+) is constrained. Specifically, y−i

il−1
≤ y− ≤ y−i

il
(for l > 0), y−i

ih−1
≤ y+ ≤

y−i
ih

and therefore y− ≤ y+ (moreover, if y− = y+, supplier i is in AOUT and is thus inactive).

11
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Figure 2: Division of the bidding strategies in different regions. Intuitively, a bid in region Alh implies that

supplier i forces suppliers il+1, . . . , ih−1 out of the market, i.e., these suppliers receive zero capacity allocation.

Since E
[
min

{
max(D− y−, 0), y+ − y−

}]
=

∫ y+

y−
(u− y−)f(u)du + (y+ − y−)F (y+), integration in

parts yields

Π = (v − f)(y+ − y−) + (w − c)
∫ y+

y−
F (u)du.

Using Equation (8), one can express (w, v) as a function of y− and y+ when y− < y+, since f(·) > 0.

Specifically,

v = vh + F (y+)
−(vl − vh) + F (y−)(wh − wl)

F (y−)− F (y+)
= vl − F (y−)

(vl − vh)− F (y+)(wh − wl)
F (y−)− F (y+)

w = wh − −(vl − vh) + F (y−)(wh − wl)
F (y−)− F (y+)

= wl +
(vl − vh)− F (y+)(wh − wl)

F (y−)− F (y+)
.

(9)

This implies that we can express Π using y− and y+ instead of v and w. Within Alh, l > 0,

Π(w, v) = Jlh(y−, y+) =





(vh − f)(y+ − y−) + (wh − c)
∫ y+

y−
F (u)du

−
[−(vl − vh) + F (y−)(wh − wl)

F (y−)− F (y+)

] ∫ y+

y−

(
F (u)− F (y+)

)
du

=





(vl − f)(y+ − y−) + (wl − c)
∫ y+

y−
F (u)du

−
[
(vl − vh)− F (y+)(wh − wl)

F (y−)− F (y+)

] ∫ y+

y−

(
F (y−)− F (u)

)
du

12



When l = 0, the transformation described in Equation (9) is not well defined, since different values

of (w, v) yield the corresponding (y− = 0, y+). We observe that for a given y+, y− = 0, the profit

with a bid w = wh − t and v = vh + F (y+)t, t ≥ 0, is,

Π = (vh + F (y+)t− f)y+ + (wh − t− c)
∫ y+

0
F (u)du

= (vh − f)y+ + (wh − c)
∫ y+

0
F (u)du− t

∫ y+

0

(
F (u)− F (y+)

)
du.

(10)

Thus, to maximize Π it is best for the supplier to select t as small as possible, within A0h: we set

v + w = vi1 + wi1
v − vh

wh − w
= F (y+).

(11)

This justifies the extension of Equation (8) for l = 0. Consequently,

Π(w, v) = J0h(y+) =





(vh − f)y+ + (wh − c)
∫ y+

0
F (u)du

−
[
(vh + wh)− (vi1 + wi1)

1− F (y+)

] ∫ y+

0

(
F (u)− F (y+)

)
du

Finally, the problem faced by supplier i is:

sup
(w,v)

Π(w, v) = max

(
0, max

l=0,...,k−1,h=l+1,...,k
sup

(y−,y+)
Jlh(y−, y+)

)

The optimization problem is defined as a supremum of profit, in terms of either (w, v) or (y−, y+).

As we shall see later, when optimizing on (w, v), there does not always exist an optimal solution,

and the supremum may be obtained by bidding arbitrarily close to another supplier. However, when

using (y−, y+) as decision variables, an optimal solution is always obtained.

Since F (·) is differentiable over (d, d), the expected profit is differentiable in (y−, y+):

dJlh

dy−
= (f − vl) + (c− wl)F (y−) + f(y−)

[
(vl − vh)− F (y+)(wh − wl)

(F (y−)− F (y+))2

] ∫ y+

y−

(
F (u)− F (y+)

)
du

dJlh

dy+
= (vh − f) + (wh − c)F (y+)− f(y+)

[−(vl − vh) + F (y−)(wh − wl)
(F (y−)− F (y+))2

] ∫ y+

y−

(
F (y−)− F (u)

)
du

(12)

Notice that (vl − vh)− F (y+)(wh −wl) ≥ 0 and −(vl − vh) + F (y−)(wh −wl) ≥ 0 hold; we shall

use this observation later.

5.2 Border distributions

Maximizing Jlh on (y−, y+), such that (w, v) ∈ Alh, may yield, in general, interior solutions or

extreme solutions. It turns out that they are always extreme solutions for a class of customer

demand distributions. A customer demand distribution is called border demand distribution when

it satisfies the following property.
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Property 1 (border distribution) For any supplier, for any region Alh, defined by Equations

(6) or (7), there is an optimal bid (w, v) that belongs to the border of the region.

The property implies that for any supplier bidding in region Alh, there is an optimal bid on the

boundary of region Alh, for any cost parameters. For instance, for a supplier bidding in region A12

of Figure 2, there is an optimal bid on the boundary of A12 with either A02 or A13 or AOUT .

Interestingly, a wide class of demand distributions, the class of log-concave distributions, satisfies

the border distribution property. For any distribution in this class, the logarithm of the demand’s

p.d.f. is concave. It is easy to verify that the class of log-concave includes distributions such as

uniform, exponential, normal, etc.

Theorem 1 A log-concave demand distribution, i.e., with log(f) concave, is a border distribution.

The proof of this result is presented in the appendix and can also be found in Mart́ınez-de-Albéniz

[12].

Under Property 1, the suppliers will place their bids in the border of some region. The property

allows us to determine their optimal bids.

5.3 Optimal bids

As we will soon see, it is of particular interest to examine the situation in Alh where there is no

active supplier between l and h and both l and h are active. Notice that these are all the regions that

share an edge with AOUT . When we know that the optimal bid is in this region, we can characterize

the optimal bid.

Consider supplier i bidding in such a region, Alh, and define ym to be the cumulative quantity

captured by suppliers i1, . . . , il when i is absent, i.e.,

F (ym) =
vl − vh

wh − wl
. (13)

The constraint of being in Alh can be written as y0 := y−i
il−1

≤ y− ≤ ym ≤ y+ ≤ y3 := y−i
ih

where

y−i
il−1

and y−i
ih

are defined in Equation (5).

If the bid of supplier i does not make l or h inactive, we can derive useful properties. In this

case, the optimal bid cannot be such that y− = y0 (because it makes il inactive) or y+ = y3 (ih
inactive). Therefore, since it is optimal to bid on the border of the region, it must be that y− = ym

or y+ = ym is optimal. These imply that supplier i bids the same (w, v) as l or h.

In the first case, i.e., when y− = ym is optimal, recall that −(vl − vh) + F (y−)(wh − wl) = 0 so

from Equation (12)
dJlh

dy+
= (vh − f) + (wh − c)F (y+)

and therefore we must have that c ≤ wh and

F (y+) =
f − vh

wh − c
.

14



Similarly, when y+ = ym is optimal,

dJlh

dy−
= (f − vl) + (c− wl)F (y−),

hence wl ≤ c and

F (y−) =
vl − f

c− wl
.

We summarize these results in the next theorem.

Theorem 2 Given a border distribution, assume that, for a supplier with costs (c, f), the optimal

bid belongs to some unique region Alh, l > 0, where there is no active supplier between l and h.

Define ym as in Equation (13) and hence having (w, v) ∈ Alh is equivalent, for some y0, y3, to

y0 ≤ y− ≤ ym ≤ y+ ≤ y3. Define y1 and y2 as follows,

F (y1) =
vl − f

c− wl
, (14)

F (y2) =
f − vh

wh − c
. (15)

Then, one and only one case from the following is true.

• either y0 ≤ y1 ≤ ym and y2 > y3, and (w∗, v∗) = (wl, vl), y∗+ = ym and y∗− = y1,

• or y0 > y1 and ym ≤ y2 ≤ y3, and (w∗, v∗) = (wh, vh), y∗− = ym and y∗+ = y2,

• or y0 ≤ y1 ≤ ym ≤ y2 ≤ y3; (w∗, v∗) = (wl, vl), y∗+ = ym and y∗− = y1, only if
∫ ym

y1

[F (y1)− F (u)]du

F (y1)− F (ym)
≥

∫ y2

ym

[F (u)− F (y2)]du

F (ym)− F (y2)
; (16)

(w∗, v∗) = (wh, vh), y∗− = ym and y∗+ = y2, only if
∫ ym

y1

[F (y1)− F (u)]du

F (y1)− F (ym)
≤

∫ y2

ym

[F (u)− F (y2)]du

F (ym)− F (y2)
. (17)

Intuitively, the theorem shows that there are two candidate optimal bids when we know that

the optimal bid is in a given region Alh, and there are no active suppliers in between il and ih.

First, the supplier may choose to set (w∗, v∗) = (wl, vl), together with y∗− = y1. Since the supplier

profit function is not well-defined when two suppliers submit identical bids, this means that the

best strategy of the supplier is to place a bid arbitrarily close to (wl, vl) while ensuring that y− =

y1. Thus, there is no optimal bid when defined through (w, v), but there is an optimal bid when

defined with (y−, y+). In practice, this means that a sequence of bids such that wδ = wl + δ and

vδ = vl − F (y1)δ approaches the highest expected profit, when δ → 0 and positive. Alternatively,

the supplier may choose to set (w∗, v∗) = (wh, vh), together with y∗+ = y2. The profit function
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is not well defined in this case as well. Similarly, a sequence of bids such that wδ = wh − δ and

vδ = vh + F (y1)δ approaches the highest expected profit, when δ → 0 and positive.

Interestingly, no other situations are possible at optimality, since the demand distribution satisfies

the border property and there is no optimal solution outside Alh (thus discarding a strategy where

y− = y0 or y+ = y3).
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Figure 3: Expected supplier profit (only non-negative values are shown, for better readability), as a function

of (y−, y+) (left figure), and as a function of (w, v) (right figure). We use here a [0,1]-uniform demand, with

competing bids (0, 55), (20, 35), (80, 2) and (100, 0). The supplier costs are c = 55 and f = 8. We calculate the

expected profit obtained by bidding in A23, i.e., between the second and third bids, (20, 35) and (80, 2).

Figure 3 illustrates the optimal bid discussed in the theorem. In the figure we show iso-profit

curves as a function of both (y−, y+), on the left, and of (w, v), on the right, for a [0,1]-uniform

demand, with competing bids (0, 55), (20, 35), (80, 2) and (100, 0). The supplier costs are c = 55

and f = 8. We calculate the expected profit obtained by bidding in A23, i.e., between the second

and third bids, (20, 35) and (80, 2), which implies y0 = 0, ym = 0.5 and y3 = 0.9. As one can see,

the figure on the left shows that it is optimal to set y∗− = ym = 0.5 and y∗+ = y2 = 0.76, which

yields higher profit than the other candidate bid y− = y1 = 0.2286 and y+ = ym = 0.5. This

corresponds to placing a bid very close to (w, v) = (80, 2), as seen in the right figure. Note that

the profit function is discontinuous at (w, v) = (80, 2), which implies that the optimal bid should

be wδ = 80− δ, vδ = 2 + F (0.76)δ = 2 + 0.34δ, for small δ > 0.

6 Game Equilibria

We analyze the game in which the suppliers compete for selling capacity. This section studies the

equilibria of this game in pure strategies.

Consider first the following example. There are N = 2 suppliers with costs (c1, f1) = (0, 60) and

(c2, f2) = (75, 5). The demand is uniformly distributed in [0, 1]. The selling price is p = 100, and
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hence the dummy supplier posts a bid (p, 0). Consider the situation when both suppliers submit

two bids that are very close to (60, 12). Are these bids in equilibrium? In other words, does each

supplier maximize its profit given the competitor’s bid? As we demonstrate below, this is not the

case.

Indeed, Figure 4 shows the profit functions of each supplier as a function of their bid (w, v). As

one can see, both are maximized by setting (w, v) = (60, 12). Since the profit maximizer is not

well defined in (w, v), as seen in the previous section, supplier 1’s profit function is maximized by

setting y∗1− = 0 and y∗1+ = 0.2, and supplier 2’s profit function is maximized by y∗2− = 0.5333 and

y∗2+ = 0.8. Hence, this cannot be an equilibrium, since the suppliers do not agree on a capacity

allocation. However, if the suppliers’ bids would yield y∗1+ = y∗2−, both suppliers would have no

incentive to modify their bids.
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Figure 4: Expected supplier profit (only non-negative values are shown, for better readability), as a function

of (y−, y+) (left figures), and as a function of (w, v) (right figures). We use here a [0,1]-uniform demand.

The upper figure represents the profit of supplier 1, with cost (c1, f1) = (0, 60), with competing bids of (60, 12)

(supplier 2) and (100, 0) (dummy supplier). The lower figure represents the profit of supplier 2, with cost

(c2, f2) = (75, 5), with competing bids of (60, 12) (supplier 1) and (100, 0) (dummy supplier).

The example shows that the concept of equilibrium in this game is not well defined when two
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bids are identical. However, using the optimality equations, using y− and y+, we can determine

when a bid situation with ties is stable.

6.1 Equilibrium conditions

When the strategies are defined only through (w, v), no equilibria might exist since some supplier’s

problem may not have an optimal solution, as its profit function is discontinuous when two suppliers

submit the same bid6.

To overcome this problem, we consider, instead of Nash equilibrium, the concept of ε-equilibrium,

as defined in Radner [16] or Fudenberg and Levine [9]. We say a set of pure strategies (wi, vi)i=1,...,N

is an ε-equilibrium of the bidding game when, for each supplier,

Πi(wi, vi,w−i,v−i) ≥ sup
(w,v)

Πi(w, v,w−i,v−i)− ε.

For ε → 0, we characterize the limit of ε-equilibria. In other words, we describe what sort of

equilibria arises when suppliers choose bids that are very close to the optimum.

In what follows, we say that a set of pure strategies (wi, vi)i=1,...,N is an equilibrium of the bidding

game when there exists, for each supplier i, for each ε, (wε
i , v

ε
i ), such that: (1) (wε

i , v
ε
i ) → (wi, vi)

when ε → 0, and (2) for each ε,

Πi(wε
i , v

ε
i ,w

ε
−i,v

ε
−i) ≥ sup

(w,v)
Πi(w, v,wε

−i,v
ε
−i)− ε.

Essentially, this definition of equilibrium circumvents the continuity problem of the supplier profit

function, and hence makes unnecessary the use of a rationing rule in case of a tie.

In this section, we provide necessary conditions for equilibrium. We do not analyze the existence

of pure strategy equilibria, although these can be shown to exist under fairly general assumptions.

Usual proof methods may not work because a given supplier’s pay-off function is discontinuous,

when its bid is equal to some other supplier’s bid7. Fortunately, we are able to show existence by

explicitly constructing an equilibrium, see Mart́ınez-de-Albéniz [12] for the algorithmic details. An

example of the algorithm is provided in Section 6.2.

Using the results of the previous section, we can characterize a crucial necessary condition for

equilibrium, arising from Proposition 2.

Proposition 2 Consider a border distribution. In any equilibrium, if (wi, vi) = (wj , vj) and

Πi,Πj > 0 (both suppliers are active), then (wi, vi) belongs in the segment [(ci, fi); (cj , fj)].

6As a consequence, the buyer’s problem has multiple optimal solutions and hence it is not clear how demand is allocated to the

two suppliers. It can be shown that in general, when the splitting is pre-determined exogenously, e.g., split the capacity and the

allocation 50− 50%, no equilibrium exists.
7To our knowledge, the best result that we can hope for with a more general approach is existence of mixed-strategy equilibria,

following Dasgupta and Maskin [6].
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This is a direct consequence of Proposition 2. Intuitively, if two suppliers i and j, submit the

same bid and are at equilibrium, then it must be true that the quantities that they desire, their

optimal y∗i+ and y∗j−, must coincide. This results on having the equilibrium bid in the cost segment.

6.2 Equilibria with efficient suppliers only

We start by defining the concept of efficiency which leads to a natural and desirable property of

equilibria.

Definition 3 We say that supplier i is efficient when (ci, fi) is a winning point in the set {(c1, f1),

. . . , (cN , fN ), (p, 0)}.

Proposition 3 Assume that supplier i is efficient. Then, in every equilibrium, Πi > 0.

This implies that efficiency guarantees any supplier to be active in any equilibrium outcome.

That is, the supplier will receive a positive share of capacity and make some strictly positive profit.

Proposition 4 Given a border distribution, assume that all suppliers are efficient. Then, in every

equilibrium, for every pair (i, j), if ci < cj then wi ≤ wj.

Proposition 4 implies that if all suppliers are efficient, supplier i, i = 1, . . . , N , bids in region

Ai−1 i+1 in every equilibrium. More importantly, this result confirms the intuition on the suppliers’

bidding behavior. No supplier will bid an execution fee, w, lower than a competitor’s execution fee

if the competitor’s execution cost is smaller. Put differently, the smaller a supplier’s execution cost,

c, the lower this supplier’s execution bid, w.

Combining Theorem 2 and Propositions, 2, 3 and 4 , we can characterize strong necessary

conditions on the equilibria.

Theorem 3 For a border distribution, assume that all the suppliers are efficient. Define cN+1 =

wN+1 = p, fN+1 = vN+1 = 0. Then, in every equilibrium, supplier i, i = 2, . . . , N , places its bid:

• either (wi, vi) = (wi−1, vi−1), and then this bid falls in the segment [(ci−1, fi−1); (ci, fi)];

• or (wi, vi) = (wi+1, vi+1), and then this bid falls in the segment [(ci, fi); (ci+1, fi+1)].

When i = 1, only the second case is possible, i.e., (w1, v1) = (w2, v2), and this common bid falls in

the segment [(c1, f1); (c2, f2)].

The theorem builds on the optimal behavior of each supplier: when all suppliers are efficient, it

is optimal for supplier i either to place a bid equal to the bid of i− 1 or that of i+1, from Theorem

2. This implies that supplier bids will be clustered in groups of two or three suppliers. This is true

since according to the theorem either two suppliers bid somewhere in the segment connecting their

true cost parameters, or one supplier bids its true costs and two other suppliers place a similar bid
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to this one. Thus, in practice, one will observe less bids than the number of suppliers, roughly half

of them. We call this cluster competition, since in equilibrium the market is divided into stable

clusters. An example of the clustering is provided in Figure 5.

Figure 5: Plot of the costs of six different suppliers, plus dummy supplier at (c, f) = (100, 0). Three clusters

are formed, with suppliers 1 and 2, 3 and 4, and 5 and 6 placing identical bids.

The type of competition described in this result has some interesting properties. The most

striking feature is that more than one supplier will be offering the same bid. One may then wonder

whether any supplier in that position should instead reduce its bid a little bit so that it puts its

rival out of the market. The answer provided by the theorem is that this is not the case, that is,

the additional profit the supplier will receive by reducing its bid is negative. Put differently, all

suppliers in the same cluster, i.e., offering the same bid, are better off staying in the cluster rather

than trying to outbid the other members of the cluster.

The theorem also suggests that every supplier is competing directly with one of its rival suppliers,

i.e., with the supplier who has the next smaller or the next larger execution cost c. An important

insight from this observation is that, in equilibrium, each supplier’s bid will be most sensitive to

the bid of its closest competitor, and not to the rest of the bids. This implies that in equilibrium,

competition is no longer done on a global basis (among all suppliers) but rather locally (between

two or three competing suppliers).

In addition, Theorem 3 can be used to construct equilibria. If an equilibrium exists, supplier

i bids the same as i − 1 or i + 1. To construct an equilibrium, where supplier i bids the same as

supplier i − 1 (resp. i + 1), in the segment [(ci−1, fi−1); (ci, fi)] (resp. [(ci, fi); (ci+1, fi+1)]), one

must ensure that the supplier realizes a higher profit than bidding the same as i + 1 (resp. i − 1).
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Consider for example the case where N = 3, all suppliers are efficient, and c1 < c2 < c3 < c4 = p.

When suppliers 1 and 2 bid their true cost (4, the dummy supplier, also bids its true cost), let e(3)

be the supplier whose bid supplier 3 prefers to imitate. That is, e(3) = 2 if supplier 3 is better off by

placing a bid close to the cost of supplier 2; and e(3) = 4 if it is better to place it close to the cost of

the dummy supplier, 4. Then, if e(3) = 2, (w1, v1) = (w2, v2) = (w3, v3) = (c2, f2) is an equilibrium;

if e(3) = 4, (w1, v1) = (w2, v2) = (c2, f2), (w3, v3) = (p, 0) is an equilibrium. This approach can be

extended to arbitrary N , where e(i) is determined for all i, and then suppliers are matched so that

the proposed bids form an equilibrium. The details can be found in Mart́ınez-de-Albéniz [12].

Finally, observe that the theorem does not rule out the existence of multiple equilibria, and

in general the set of equilibria contains multiple possibilities. In any case, this result shows that

the possible equilibria belong to the lower envelope of the true suppliers’ costs. Such equilibria

should satisfy the optimality conditions in Equations (16) and (17). The following example (the

one presented at the beginning of this section) illustrates the multiplicity of equilibria.

Example 1 Assume that customer demand is uniformly distributed in [0, 1]. Let N = 2 and the

true costs be (c1, f1) = (0, 60), (c2, f2) = (75, 5), p = 100. Both suppliers are efficient. For any

w ∈ [50, 75], the following bids form different equilibria:

(w1, v1) = (w2, v2) =
(

w, 60− 55
75

w

)
, y1 =

20
75

, y2 =
4
15

+
40

3(100− w)
.

We should point out that in any of these equilibria, the buyer’s expected profit is equal to
8(150− w)2

225(100− w)
≥ 64/9. On the other hand, an Expected Vickrey-Clark-Groves (EVCG) auction,

which is supply-chain-efficient (see Schummer and Vohra [17] for details), would allocate supplier 1

a profit of 32/3− 8 = 8/3, supplier 2 a profit of 32/3− 8 = 8/3 and the buyer an expected profit of

32/3− 8/3− 8/3 = 16/3 < 64/9. Thus, in this example, the first-price competition environment is

preferred by the buyer to the supply-chain-efficient EVCG auction.

The profit functions of suppliers, buyer and the entire supply chain are plotted in Figure 6. As

we can see, the profit of supplier 1 is increasing in w, the profit of supplier 2 is decreasing in w.

Thus, among all equilibria, there is no single one that both suppliers prefer: supplier 1 would always

prefer an equilibrium with high w, while supplier 2 would prefer small w. Finally, the buyer’s profit

is increasing in w (but could be decreasing in other examples), and the total supply chain profit is

increasing in w.

Finally, to conclude this section, we provide a bound on the inefficiencies created by suppliers’

competition. We define the total surplus as follows:

U = (PROFIT OF BUYER) +
N∑

i=1

(PROFIT OF SUPPLIER i).
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Figure 6: Expected profit of suppliers, buyer and the entire supply chain, for each possible equilibrium of the

bidding game, as a function of w (execution price of both suppliers in equilibrium), from Example 1.

The payments between buyer and suppliers will cancel out, and this quantity will only capture

the true revenue from customers minus the costs of production. Thus, we can express the total

supply chain surplus as

U = p

∫ yN

0
F (u)du−

N∑

i=1

fi(yi − yi−1)−
N∑

i=1

ci

∫ yi

yi−1

F (u)du

=
N∑

i=1

∆ci

∫ yi

0
[F (u)− F (y∗i )]du.

where F (y∗i ) =
fi − fi+1

ci+1 − ci
and ∆ci = ci+1 − ci. These quantities are well-defined when all the

suppliers are efficient. The social surplus is maximized when yi = y∗i , i = 1, . . . , N. In this case, the

optimal surplus is

U∗ =
N∑

i=1

∆ci

∫ y∗i

0
[F (u)− F (y∗i )]du.

When the suppliers compete, the allocation of capacities, yi, i = 1, . . . , N, is not necessarily efficient,

in the sense that it is possible that yi 6= y∗i for some i. The loss in surplus, due to the suppliers’

competition, is equal to

∆U =
N∑

i=1

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du.
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Theorem 4 Given a border demand distribution and efficient suppliers, in every equilibrium, the

allocation of capacities obtains at least 50% of the optimal total surplus, i.e.,

∆U

U∗ ≤ 1
2
.

This is the best bound available for general border distributions. However, this bound can be

improved when we include additional conditions on the demand distribution, as shown next.

Theorem 5 Given a log-concave demand distribution and efficient suppliers, in every equilibrium,

the allocation of capacities obtains at least 75% of the optimal total surplus, i.e.,

∆U

U∗ ≤ 1
4
.

This bound is tight for two suppliers and uniform demand distribution.

The theorem thus implies that for uniform, exponential or normal demand distributions (which

belong to the log-concave class) the loss of efficiency due to competition is no more than 25%.

Interestingly, the loss of efficiency is due exclusively to supplier-supplier interactions, since, if all

suppliers were integrated (or colluded), they would be able to extract all the supply chain profit8.

6.3 Equilibria with inefficient suppliers

The previous results, characterizing equilibrium, are obtained under the assumption that all sup-

pliers are efficient. We now investigate the case in which not all suppliers are efficient.

Interestingly, as we demonstrate below, it might happen that a non-efficient supplier is active at

equilibrium. This occurs because bids are only partially linked to the true costs, and a non-efficient

supplier may capture market share by positioning itself in a segment of the market with no, or low,

competition.

Example 2 Assume that customer demand is uniformly distributed in [0, 1]. Let N = 3 and the

true costs be

(c1, f1) = (0, 40), (c2, f2) = (40, 20), (c3, f3) = (70, 11), p = 100.

Clearly, supplier 3 is not efficient. If this was a centralized system, in which the true costs are

considered, we would have y∗1 = 0.5, y∗2 = 0.666 and y∗3 = 0.666, and so the buyer would purchase

capacities x∗1 = 0.5, x∗2 = 0.166 and x∗3 = 0.

The following bids form an equilibrium:

(w1, v1) = (w2, v2) = (20, 30), (w3, v3) = (100, 0), y1 = 0.5, y2 = 0.625, y3 = 0.633.

Thus, a non-efficient supplier captures capacity and makes positive profit.
8For example, they could offer the contracts wn = p− ε and vn = F (y∗n)ε, and for i < n, wi = wi+1 − ε, vi = vi+1 + F (y∗i )ε, for

ε arbitrarily close to zero.
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The example suggests that the presence of inefficient suppliers can lead to counter-intuitive

situations.

The next theorem depicts the behavior of the suppliers at equilibrium.

Theorem 6 For a border distribution, let {(w1, v1), . . . , (wN , vN ), (p, 0)} be the bids of the suppliers

in a equilibrium. Assume that supplier i is active. Then we must have that:

• either there is j = 1, . . . , N + 1 such that supplier j is active, (wi, vi) = (wj , vj) and moreover

(wi, vi) belongs in the segment [(ci, fi); (cj , fj)];

• or there are j, k = 1, . . . , N + 1 such that supplier k is inactive, supplier j is active and

(wi, vi) = (wk, vk) + θ(wk − wj , vk − vj) for some θ ≥ 0.

This theorem adds a new case to what was presented in Theorem 3. This new situation arises

when an inactive supplier sets the price of some active supplier: the reaction of the active supplier

keeps the inactive (and inefficient) supplier out of the market by making its entry non-profitable.

Another example of this phenomenon can be found in the Bertrand model with asymmetric

players. Although it is commonly argued that the only equilibrium in pure strategies is such that the

most competitive producer captures all the market at a price equal to the second most competitive

cost, as in Tirole [19] p.211, this equilibrium is not unique. As noted by Erlei [8], all the prices

between the smallest and the second smallest costs are Nash equilibria of the system. This is true

since an inefficient player can impact the market price by placing absurd bids knowing that it will

not capture any market share. This is illustrated by the next example.

Example 3 Assume that customer demand is uniformly distributed in [0, 1]. Let N = 4 and the

true costs be

(c1, f1) = (0, 40), (c2, f2) = (40, 20), (c3, f3) = (70, 6), (c4, f4) = (80, 6), p = 100.

Supplier 4 is not efficient, the rest are. The following bids form an equilibrium

(w1, v1) = (w2, v2) = (20, 30), (w3, v3) = (w4, v4) = (80, 4)

y1 = 0.5, y2 = 0.567, y3 = 0.8, y4 = 0.8.

Supplier 4, by placing a bid with which it would never make a positive profit, sets the price of supplier

3, who is efficient and must react to the threat of supplier 4.

Similarly to the Bertrand model with asymmetric players, it may be possible to discard some of

the equilibria proposed by Theorem 6, by eliminating for instance dominated strategies. Indeed, in

Example 3, supplier 4 is bidding below cost, which is dominated by the strategy of bidding exactly

the cost.
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7 Discussion

In this research, we have analyzed the procurement process between a single buyer and multiple

suppliers. Suppliers compete on price and flexibility, two attributes that are important to the buyer.

Specifically, each supplier is offering a different option contract and the buyer reserves capacities

at each supplier so as to maximize expected profit. We have modeled the process as a single-shot

game where the suppliers submit an offer with a reservation and an execution fee.

Under the assumption of the demand distribution having the border property, satisfied for in-

stance by any log-concave distribution, e.g., uniform, exponential or normal distributions, we char-

acterize optimality conditions for suppliers’ bids and provide necessary conditions for equilibrium

bids.

Interestingly, equilibria in pure strategies give rise to what we call cluster competition. This

provides several insights.

1 It pays to be efficient. No matter how the competitors bid, when a supplier is efficient, it will

capture orders from the buyer and will have a non-negative expected profit.

In other words, being an efficient supplier means capturing market share, and no other supplier

can push an efficient supplier out of business. Notice that our definition of efficiency allows having

multiple efficient technologies, because the cost space is two-dimensional. This implies that an inef-

ficient supplier may become efficient by reaching the efficient frontier defined by the lower envelope

of the true costs of the other suppliers. Hence, this inefficient supplier does not necessarily have

to change technology and copy the same exact cost as other suppliers; what is needed is a local

improvement of its costs so as to move to the efficient frontier.

2 Suppliers compete with suppliers with similar cost structure. When all suppliers are

efficient, a supplier will compete against another supplier with similar technology, either the one

with next lower or next higher execution cost.

Indeed, in equilibrium, a supplier’s bid is most sensitive to the bid of another supplier with

similar technology. This leads to our third insight.

3 Competition preserves diversity and segments the market. At a market equilibrium

with efficient suppliers, the suppliers are clustered into small groups of no more than three suppliers

and no less than two suppliers. All suppliers within each group offer the same option and share the

order from the buyer.

The market will thus be segmented by groups of similar technologies. Competition will diminish

technological variety but will not eliminate it. This is in contrast to market behavior in the price-

only competition. Thus, in our model, if at some point a supplier “kills” its competitors in a given
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niche, i.e., a given cluster, and its competitors exit the market, this supplier will increase its market

share by moving to a different niche.

4 Prices are directly related to true cost. The equilibrium prices of the different options

offered by the suppliers lie in the lower envelope of the costs of the system. That is, the reserva-

tion and execution equilibrium prices are linked to the true reservation and execution costs and no

inflation of prices is stable.

This insight shows the link between the costs of the system and the option prices available in the

market. Specifically, if all suppliers are efficient, this implies a range of possible bids, each of which

is along the lower envelope of the true suppliers’ costs. However, many equilibria are possible, and

hence it is not possible to predict the option prices.

5 Competition leads to a loss of supply chain profit. While suppliers’ prices are related to

their true costs, the allocation of capacity can be quite different from the one achieved in a centralized

system. However, our analysis indicates that the loss of system profit is no more than 50% of the

maximum possible, and 25% for the class of log-concave distributions, a class that includes commonly

used distributions such as the normal, uniform and exponential.

Finally, this paper will be incomplete if we do not mention important extensions of our model.

One possible direction is to allow buyers to purchase products at a spot market in addition to using

the contracts signed with the suppliers. In such a model, suppliers and buyers negotiate contracts

knowing that additional supply or demand are available in the spot market. Such a model would

generalize not only the model in the current paper but also the models presented in Wu et al.[21].

Another extension is to develop a multi-attribute competition for other factors such as quality

or lead time, where the optimal portfolio for the buyer would be found endogenously. All these

extensions present significant technical challenges.
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Appendix: Proofs

Proposition 1

Proof. To obtain the optimal portfolio we maximize function V (·) over the feasible region P defined

in Equation (3). From Equation (2), we observe that function V (·) is the sum of strictly concave

functions of yi, i = 1, . . . , N. Hence, it is strictly concave jointly in (y1, . . . , yN ). The feasible region

is a polyhedral cone with non-empty interior. This implies that the Slater conditions hold for this

problem and that the Karush-Kuhn-Tucker conditions are necessary and sufficient at optimality

(see Bertsekas [3] for details).

Define for every constraint yi−1 − yi ≤ 0, i = 1, . . . , N, the associate Lagrange multiplier λi ≥ 0.

The KKT optimality conditions are, for i = 1, . . . , N , assuming λN+1 = 0:

(vi+1 − vi) + (wi+1 − wi)F (yi) = λi+1 − λi

λi(yi−1 − yi) = 0

yi−1 − yi ≤ 0

λi ≥ 0

(18)

Let {i1, . . . , ik} be the winning set of {(w1, v1), . . . , (wN+1, vN+1)}. Define yi1 , . . . , yik−1
such

that

F (yij ) =
vij − vij+1

wij+1 − wij

F (yik) = 0 and for the other variables yi = yi−1 (remember from Equation (1) that y0 = 0). Note

that it can happen that yi = ∞ for some i. Define also λi1 = . . . = λik = 0 together with:

(i) for 1 ≤ i < i1, λi = (vi − vi1) + (wi − wi1),

(ii) for j = 1, . . . , k − 1, for ij < i < ij+1, λi = (vi − vij ) + (wi − wij )F (yij ),

(iii) for ik < i, λi = (vi − vik).

It is now sufficient to verify that this solution satisfies the KKT conditions, Equation (18).

Evidently, the first three requirements in (18) are satisfied by construction. It remains to verify

that λi ≥ 0 for all i = 1, . . . , N . To see this, we analyze three different cases:

(i) for 1 ≤ i < i1, λi = (vi − vi1) + (wi − wi1) ≥ 0 from part (b) of Definition 2;

(ii) for j = 1, . . . , k− 1, for ij < i < ij+1, λi = (vi− vij )+ (wi−wij )
vij − vij+1

wij+1 − wij

≥ 0 from part (c);

(iii) for ik < i, λi = (vi − vik) ≥ 0 from part (d).
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Finally, we see that no inactive point can be winning since this would imply that one of the

inactive points is on the segment joining two other points. This would contradict the minimality of

the winning set in Definition 2.

Proof of Theorem 1

Proof. It is easy to see that, in order to prove the result, one can show that the profit, as a function

of (y−, y+), does not achieve a local interior maximum, and this holds for all cost and rival bids

parameters. For this purpose, assume that for a given set of parameters, we have a strict local

maximum of the profit function.

Take ym ≥ 0, define

α1 =
vl − f

c− wl
,

α2 =
f − vh

wh − c
,

and αm = F (ym). Assume, with no loss of generality, that the feasible region is 0 ≤ y− ≤ ym ≤ y+.

Let (y−, y+) be a strict local maximum of the function

Φ(y−, y+) =
α1 − αm

α1 − α2

∫ y+

y−

(
F (u)− α2

)
du− F (y−)− αm

F (y−)− F (y+)

∫ y+

y−

(
F (u)− F (y+)

)
du,

which corresponds to the profit divided by wh − wl. Let α− = F (y−) and α+ = F (y+).

Since this is a strict interior maximum, the first order conditions are, after recombining the

different terms,

0 =
dΦ
dy−

= −(αm − α2)(α1 − α−)
(α1 − α2)

+ f(y−)
(αm − α+)

(α− − α+)2
{∫ y+

y−
(F (u)− α+)du

}
(19)

0 =
dΦ
dy+

=
(α1 − αm)(α+ − α2)

(α1 − α2)
+ f(y+)

(α− − αm)

(α− − α+)2
{∫ y+

y−
(α− − F (u))du

}
. (20)

Let

A =
(

f(x)
F (x)− F (y)

)



∫ y

x
(F (u)− F (y))du

F (x)− F (y)




and

B =
(

f(y)
F (x)− F (y)

)



∫ y

x
(F (x)− F (u))du

F (x)− F (y)


 .

The first order conditions are equivalent to

A =
(αm − α2)(α1 − α−)
(α1 − α2)(αm − α+)

,

B =
(α1 − αm)(α+ − α2)
(α1 − α2)(α− − αm)

,
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or equivalently,

[α− − α+

α1 − α−
− 1−A

A

][α− − α+

α+ − α2
− 1−B

B
+

1
B

]
= 1 +

1
A

α− − αm

αm − α+
,

[α− − α+

α+ − α2
− 1−B

B

][α− − α+

α1 − α−
− 1−A

A
+

1
A

]
= 1 +

1
B

αm − α+

α− − αm
.

(21)

We can see that when f is log-concave, then
∫ y

x
(F (x)− F (u))du

is log-concave in y. This implies that 0 ≤ B ≤ 1. Similarly, 0 ≤ A ≤ 1 when f is log-concave. Thus

under this assumption, α− ≥ αm ≥ α+ implies that the first order conditions can only be satisfied

when α+ − α2 ≥ 0 and α1 − α− ≥ 0 or α+ − α2 ≤ 0 and α1 − α− ≤ 0.

Let
a =

α− − α+

α1 − α−
− 1−A

A

b =
α− − α+

α+ − α2
− 1−B

B

c =
α− − αm

αm − α+
.

Equation (21) can thus be expressed as

a(b +
1
B

)− 1 =
1
A

c,

b(a +
1
A

)− 1 =
1
B

1
c
.

By multiplying these two equations, one obtains
[
a(b +

1
B

)− 1
][

b(a +
1
A

)− 1
]

=
1

AB
,

or equivalently [
ab− 1

][
ab +

a

B
+

b

A
+

1
AB

− 1
]

= 0.

We have two possible cases:

1. In the first case, we have a, b ≥ 0, ab = 1, and thus α1 ≥ α− ≥ αm ≥ α+ ≥ α2. Thus Equation

(21) becomes
α− − α+

α1 − α−
− 1−A

A
=

B

A

[α− − αm

αm − α+

]
,

α− − α+

α+ − α2
− 1−B

B
=

A

B

[αm − α+

α− − αm

]
.

(22)

2. In the second case, we have a, b ≤ 0, and ab = 1− a

B
− b

A
− 1

AB
. Thus, Equation (21) becomes

−α− − α+

α1 − α−
− 1 =

αm − α+

α− − αm
,

−α− − α+

α+ − α2
− 1 =

α− − αm

αm − α+
.

(23)
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The second order condition for having an interior local maximum is that the Hessian of Φ is

negative semi-definite. It is straightforward to see that the Hessian being negative semi-definite is

equivalent to having that H, defined as follows, is negative semi-definite.

H =




1
A

dA

dy−
+

f(y−)
α1 − α−

1
A

dA

dy+
+

f(y+)
αm − α+

− 1
B

dB

dy−
+

f(y−)
α− − αm

− 1
B

dB

dy+
− f(y+)

α+ − α2




We compute the quantities that define H in the following equations, evaluated at (y−, y+). We

have
1
A

dA

dy−
=

f ′(y−)
f(y−)

+
[ f(y−)
F (y−)− F (y+)

][
2− 1

A

]
,

1
A

dA

dy+
=

[ f(y+)
F (y−)− F (y+)

][
1 +

f(y−)B
f(y+)A

]
− 2

[ f(y+)
F (y−)− F (y+)

]

1
B

dB

dy−
= −

[ f(y−)
F (y−)− F (y+)

][
1 +

f(y+)A
f(y−)B

]
+ 2

[ f(y−)
F (y−)− F (y+)

]
,

1
B

dB

dy+
=

f ′(y+)
f(y+)

−
[ f(y+)
F (y−)− F (y+)

][
2− 1

B

]
.

Thus, H can be expressed as

H =




f ′(y−)
f(y−)

0

0 −f ′(y+)
f(y+)




+




[ f(y−)
α− − α+

][
2− 1

A
− α− − α+

α1 − α−

] B

A

[ f(y−)
α− − α+

]
+

[ f(y+)
α− − α+

][α− − αm

αm − α+

]

A

B

[ f(y+)
α− − α+

]
+

[ f(y−)
α− − α+

][αm − α+

α− − αm

] [ f(y+)
α− − α+

][
2− 1

B
− α− − α+

α+ − α2

]




In case (2) defined above, we can take a look at H11, using Equation (23):

f ′(y−)
f(y−)

+
[ f(y−)
α− − α+

][
2− 1

A
− α− − α+

α1 − α−

]
≥ f ′(y−)

f(y−)
+

[ f(y−)
α− − α+

][
3− 1

A

]
.

This quantity is the derivative of Ā =
A

F (y−)− F (y+)
with respect to y−. We have that

1
Ā

dĀ

dy−
=





f ′(y−)
f(y−)

+
f(y−)

F (y−)− F (y+)

+
[

f(y−)
F (y−)− F (y+)

] [
2− 1

A

]
.

Since
1
A

dA

dy−
=

f ′(y−)
f(y−)

+
[

f(y−)
F (y−)− F (y+)

] [
2− 1

A

]
,
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when A is increasing at y−, then Ā also is. On the other hand, when A is decreasing at y−, and

since A(y+, y+) = 1/2, it must be that A ≥ 1/2. Log-concavity of f implies that

f ′(y−)
f(y−)

+
f(y−)

F (y−)− F (y+)
≥ 0

and thus Ā is again non-decreasing in y−. Thus,
A

F (y−)− F (y+)
is non-decreasing, which implies

that H11 is non-negative. The same is true for H22. Thus, in case (2), the matrix H cannot be

negative semi-definite.

In case (1), using that c =
α− − αm

αm − α+
,

H =




f ′(y−)
f(y−)

0

0 −f ′(y+)
f(y+)




+




[ f(y−)
α− − α+

][
3− 2

A
− Bc

A

] B

A

[ f(y−)
α− − α+

]
+ c

[ f(y+)
α− − α+

]

A

B

[ f(y+)
α− − α+

]
+

1
c

[ f(y−)
α− − α+

] [ f(y+)
α− − α+

][
3− 2

B
− A

Bc

]




To get rid of c, we examine
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(
A

f(y−)
B

f(y+)

)
H




A

f(y−)

B

f(y+)




=





f ′(y−)
f(y−)

A2

f(y−)2

−f ′(y+)
f(y+)

B2

f(y+)2

+
2A(2A− 1)

f(y−)(α− − α+)
+

2B(2B − 1)
f(y+)(α− − α+)

=
1

(α− − α+)2





f ′(y−)
f(y−)

{∫ y+

y−
(
F (u)− α+

α− − α+
)du

}2

−f ′(y+)
f(y+)

{∫ y+

y−
(
α− − F (u)
α− − α+

)du
}2

+2(2A− 1)
{∫ y+

y−
(
F (u)− α+

α− − α+
)du

}

+2(2B − 1)
{∫ y+

y−
(
α− − F (u)
α− − α+

)du
}

Using that

∆ = y+ − y− =
∫ y+

y−
(
F (u)− α+

α− − α+
)du +

∫ y+

y−
(
α− − F (u)
α− − α+

)du,

and defining

z =
∫ y+

y−
(
F (u)− α+

α− − α+
)du,

we can express the terms in the last bracket as

E =
f ′(y−)
f(y−)

z2 − f ′(y+)
f(y+)

(∆− z)2 + 4
f(y−)

α− − α+
z2 + 4

f(y+)
α− − α+

(∆− z)2 − 2∆. (24)

By minimizing this expression in terms of z, we obtain a lower bound on this expression, i.e.
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E ≥ ∆





[f ′(y−)
f(y−)

+ 4
f(y−)

α− − α+

][
− f ′(y+)

f(y+)
+ 4

f(y+)
α− − α+

]
∆

[f ′(y−)
f(y−)

+ 4
f(y−)

α− − α+
− f ′(y+)

f(y+)
+ 4

f(y+)
α− − α+

] − 2





=





1
f ′(y−)
f(y−)

+ 4
f(y−)

α− − α+
− f ′(y+)

f(y+)
+ 4

f(y+)
α− − α+





{[
f ′(y−)
f(y−)

∆ + 4
f(y−)∆
α− − α+

− 2
] [
−f ′(y+)

f(y+)
∆ + 4

f(y+)∆
α− − α+

− 2
]
− 4

}

We thus focus on the last term of the product,

F =
(

f ′(y−)
f(y−)

∆ + 4
f(y−)∆
α− − α+

− 2
)(

−f ′(y+)
f(y+)

∆ + 4
f(y+)∆
α− − α+

− 2
)
− 4. (25)

Over all log-concave distribution functions, F defined in Equation (25) is minimized when α−−α+

is maximized. This occurs when, after defining θ by β−θ + β+(1− θ) = β0,

f(t) =

{
f(y−)eβ−(t−y−)/∆ when y− ≤ t ≤ y− + θ∆

f(y+)e−β+(y+−t)/∆ when y+ − (1− θ)∆ ≤ t ≤ y+

We thus know the structure of the worst-case log-concave distribution. By re-scaling the problem,

F can be expressed using only β−, β+ (with β+ ≤ β−) and θ ∈ [0, 1]. To obtain the following

expression, we scale ∆ to 1 and the break-point value of the distribution f(y− + θ∆) to 1. After

defining, for k ≥ 0,

Pk(z) =
ez − 1− z − . . .− zk−1/(k − 1)!

zk
, (26)

we obtained the following scaled quantities

f(y−) = e−β−θ = P0

(
− β−θ

)

f(y+) = eβ+(1−θ) = P0

(
β+(1− θ)

)

α− − α+ =
e−β−θ − 1
−β−

+
eβ+(1−θ) − 1

β+
= θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)
.

Define

R1(β−, β+) =
P0

(
− β−θ

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

) ,

G1(β−, β+) = β− − 2 + 4R1(β−, β+) ≥ 0,

and

R2(β−, β+) =
P0

(
β+(1− θ)

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

) ,

G2(β−, β+) = −β+ − 2 + 4R2(β−, β+) ≥ 0.
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Thus, F can be expressed as G1G2 − 4.

Notice that, since

P1(z)′ = P1(z)− P2(z) = P0(z)P2(−z),

we have that
dR1

dβ−
= R1

(
− θ + θ2P2(β−θ)R1

)

dR1

dβ+
= R1

(
− (1− θ)2P2(−β+(1− θ))R2

)
,

and
dR2

dβ−
= R2

(
θ2P2(β−θ)R1

)

dR2

dβ+
= R2

(
(1− θ)− (1− θ)2P2(−β+(1− θ))R2

)
,

In order to obtain a lower bound on F , we examine two different cases: either the minimal value of

F subject to θ ∈ [0, 1] and β− ≥ β+ is reached in an interior point, or it is reached at the border of

the region, i.e., θ = 0, θ = 1 or β− = β+; in any of the latter cases, the distribution turns out to be

an exponential distribution.

To analyze the first case, let’s examine the critical points of F with respect to θ, β− and β+.

That is, assume that

dF

dθ
= 0 = −

[
4R1

(
β− − (R2 −R1)

)]
G2 + G1

[
4R2

(
(R2 −R1)− β+

)]
, (27)

dF

dβ−
= 0 =

[
1 + 4R1θ

(
− 1 + θP2(β−θ)R1

)]
G2 + G1

[
4R1R2θ

2P2(β−θ)
]
, (28)

and

dF

dβ+
= 0 =

[
−4R1R2(1−θ)2P2(−β+(1−θ))

]
G2+G1

[
−1+4R2(1−θ)

(
1−(1−θ)P2(−β+(1−θ))R2

)]
.

(29)

Notice that we can express

R2 −R1 =
P0

(
β+(1− θ)

)
− P0

(
− β−θ

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)

= β+ +
θ(β− − β+)P1

(
− β−θ

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)

= β− −
(1− θ)(β− − β+)P1

(
β+(1− θ)

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)
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Thus, Equation (27) can be rewritten as

R1/G1

R2/G2
=

(R2 −R1)− β+

β− − (R2 −R2)
=

θ

1− θ

P1

(
− β−θ

)

P1

(
β+(1− θ)

) . (30)

Equation (28) can be expressed as

4θ
R1

G1
=

1
G1

+ 4θ2P2

(
β−θ

)
R1

[R1

G1
+

R2

G2

]
.

Using the inequality (a + b)2 ≥ 4ab for any a, b ∈ R, we obtain

16θ2
[R1

G1

]2
≥ 16θ2P2

(
β−θ

)R1

G1

[R1

G1
+

R2

G2

]
,

and hence
R1

G1
≥ P2

(
β−θ

)[R1

G1
+

R2

G2

]
, (31)

Similarly, Equation (29) yields

R2

G2
≥ P2

(
− β+(1− θ)

)[R1

G1
+

R2

G2

]
, (32)

Adding these two last equations, the term R1/G1 + R2/G2 cancels out, and thus

1 ≥ P2

(
β−θ

)
+ P2

(
− β+(1− θ)

)
.

Notice that P2 is convex, since P ′′
2 = P2 − 4P3 + 6P4 ≥ 0. We can therefore apply the convexity

inequality
1
2
P2

(
β−θ

)
+

1
2
P2

(
− β+(1− θ)

)
≥ P2

(1
2
β−θ − 1

2
β+(1− θ)

)
.

Thus, since P2(z) ≤ 1/2 if and only if z ≤ 0, combining the two inequalities, we obtain that

β−θ ≤ β+(1− θ)

Also, since β− ≥ β+ by construction, we have that

β−θ ≤ β+(1− θ) ≤ β−(1− θ).

This implies, that for any critical point, we must have:

• either β− ≥ β+ ≥ 0 and θ ≤ 1
2
;

• or 0 ≥ β− ≥ β+ and θ ≥ 1
2
.

When θ < 1/2, Equation (31) yields

R1

G1
≥ 1

2

[R1

G1
+

R2

G2

]
,
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and thus
R1

G1
≥ R2

G2
.

On the other hand, Equation (30) implies that, since θ/(1 − θ) < 1, P1

(
− β−θ

)
≤ P1(0) = 1 and

P1

(
β+(1− θ)

)
≥ P1(0) = 1,

R1/G1

R2/G2
=

θ

1− θ

P1

(
− β−θ

)

P1

(
β+(1− θ)

) < 1.

This is a contradiction.

Similarly, when θ > 1/2, we have again a contradiction using Equation (32) to show

R1

G1
≤ R2

G2
.

and Equation (30) to show
R1/G1

R2/G2
> 1.

Thus, the only feasible case is θ = 1/2 which implies β− = β+ = 0, and in this case G1 = G2 = 2,

so that F ≥ 0.

Thus, there are no critical points in the interior of θ ∈ [0, 1] and β− ≥ β+ such that F < 0.

The remaining case is when the minimum of F is reached at the border of the feasible set, i.e.,

the distribution is exponential, with parameter γ. In this case, we can express F as g(γ)g(−γ)− 4,

with, for z ∈ R,

g(z) = z − 2 +
4

P1(z)
.

Note that g(z)− g(−z) = −2z and

g(z) + g(−z) = 4
z(1− e−z) + z(ez − 1)− (ez − 1)(e−z − 1)

(ez − 1)(e−z − 1)

= 4
{

P1(−z) + P1(z)
P2(−z) + P2(z)

− 1
}

.

Hence,

g(z)g(−z)− 4 =
1
4

(
g(z) + g(−z)

)2
− 1

4

(
g(z)− g(−z)

)2
− 4

= 4

{
P1(−z) + P1(z)

}2

{
P2(−z) + P2(z)

}2 − 8

{
P1(−z) + P1(z)

}
{

P2(−z) + P2(z)
} − z2

After putting all terms under a common denominator, and observing that
{

P1(−z) + P1(z)
}2

= 4
{

P2(−2z) + P2(2z)
}

,{
P1(−z) + P1(z)

}{
P2(−z) + P2(z)

}
= 2

{
P1(−2z) + P1(2z)− P1(−z)− P1(z)

}
/z2,

{
P2(−z) + P2(z)

}2
= 4

{
P2(−2z) + P2(2z)− P2(−z)− P2(z)

}
,
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the numerator can be expressed as

12
{

P2(−2z)+P2(2z)
}

+4
{

P2(−z)+P2(z)
}
−16

{
P1(−2z)+P1(2z)

}
/z2 +16

{
P1(−z)+P1(z)

}
/z2.

We can use a series expansion to show that this final term is non-negative:

2
∞∑

k=0

{12 · 22kz2k

(2k + 2)!
+

4z2k

(2k + 2)!
− 16 · 22k+2z2k

(2k + 3)!
+

16z2k

(2k + 3)!

}

The coefficient of z2k in the series is

12(2k + 3)4k + 4(2k + 3)− 64 · 4k + 16
(2k + 3)!

≥ 0,

for all k ≥ 0. This shows that F ≥ 0, in all cases.

This completes the proof, since we have found that the second order maximality condition cannot

be satisfied.

Theorem 2

Proof. We have explained previously that under the assumptions of the proposition, either y∗+ = ym

and y∗− = y1 or y∗+ = y2 and y∗− = ym. Otherwise, it would be optimal to bid in some other region

Al′h′ in addition to Alh. Since this is a contradiction to the hypothesis, it implies that the two

possible optimal bids are either (wl, vl) or (wh, vh).

If y1 > ym or y2 < ym, from Equation (12) it is clear that it is not optimal for the supplier to bid

in this particular region Alh, because it has an incentive to bid in AOUT instead of Alh. Similarly,

if y1 < y0 and y2 > y3, neither one of the bids is admissible, and therefore there is an optimum

outside Alh. We can now partition the remaining possibilities into the three cases presented in the

proposition.

In the two first cases, since only one of the two bids is admissible, it must be optimal. In the

third case, it implies that (c, f) ∈ Alh. Bidding (wh, vh) is better than (wl, vl) when

Π2 = (vh − f)(y2 − ym) + (wh − c)
∫ y2

ym

F (u)du ≥ Π1 = (vl − f)(ym − y1) + (wl − c)
∫ ym

y1

F (u)du.

Using Equations (14) and (15), this is equivalent to

(wh − c)
∫ y2

ym

[F (u)− F (y2)]du ≥ (c− wl)
∫ ym

y1

[F (y1)− F (u)]du.

But also, we have that, similarly to Equation (9),

c = wh − (wh − wl)
F (y1)− F (ym)
F (y1)− F (y2)

= wl + (wh − wl)
F (ym)− F (y2)
F (y1)− F (y2)

.
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Therefore, we can rewrite the previous condition as

F (y1)− F (ym)
F (y1)− F (y2)

∫ y2

ym

[F (u)− F (y2)]du ≥ F (ym)− F (y2)
F (y1)− F (y2)

∫ ym

y1

[F (y1)− F (u)]du.

After simplifying this expression, we obtain Equations (16) and (17).

Proposition 2

Proof. Consider, in an equilibrium, that i and j submit the same bid (w, v). That is, for each

ε > 0, there are (wε
i , v

ε
i ), (w

ε
j , v

ε
j) that converge to (w, v) and such that

Πi(wε
i , v

ε
i ,w

ε
−i,v

ε
−i) ≥ sup

(w,v)
Πi(w, v,wε

−i,v
ε
−i)− ε

and

Πj(wε
j , v

ε
j ,w

ε
−j ,v

ε
−j) ≥ sup

(w,v)
Πi(w, v,wε

−j ,v
ε
−j)− ε.

Since in the limit ε → 0, both suppliers are making positive profits, then it must be true that

either (1) for ε sufficiently small, (wε
i , v

ε
i ) must be in some region Ai

lj ; or (2) (1) for ε sufficiently

small, (wε
i , v

ε
i ) must be in some region Ai

jh. Similarly, (wε
j , v

ε
j) must be for ε small in some region

Aj
l′i or Aj

ih′ . Indeed, if i (resp. j) bids in a different region, then i (resp. j) makes j (resp. i)

inactive, which would yield zero profit for one of the suppliers (this is ruled out by the assumption

of the proposition).

We can now apply Theorem 2. Assume that i bids in Ai
lj . Then j must bid in Aj

ih′ . By using

the optimality equations (14) and (15), yε
i− ≈ ym = F

−1
(

vl − v

w − wl

)
and yε

i+ = F
−1

(
vε
i − vε

j

wε
j − wε

i

)
≈

yi2 = F
−1

(
fi − v

w − ci

)
, and hence we have that the slope between (ci, fi) and (wε

i , v
ε
i ), and (wε

i , v
ε
i )

and (wε
j , v

ε
j) must be very close. The same applies to the slope between (cj , fj) and (wε

j , v
ε
j), and

(wε
j , v

ε
j) and (wε

i , v
ε
i ). Hence, taking the limit as ε → 0, it must be true that (ci, fi), (w, v) and (cj , fj)

are aligned.

Assume now the other possible case: i bids in Ai
jh then j bids in Aj

l′i. A similar analysis yields

that (cj , fj), (w, v) and (ci, fi) are aligned. In both cases, we have that (w, v) belongs to the segment

[(ci, fi); (cj , fj)].

Proposition 3

Proof. Assume that supplier i is not active in an equilibrium of the game, that its profit is 0.

Define the function Z(w−i,v−i)(·) as in Equation (4), the lower envelope made of all bids except i’s.

If fi < Z(w−i,v−i)(ci), then by bidding (ci+ε, fi+ε), supplier i achieves some positive profit for ε small

enough. This contradicts the previous hypothesis and therefore we must have fi ≥ Z(w−i,v−i)(ci).
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Construct the lower envelope C−i(·) of the costs (c1, f1), . . . , (ci−1, fi−1), (ci+1, fi+1), . . . , (cN , fN ),

(p, 0). That is, C−i(·) = Z(c−i,f−i)(·). Assume that C−i(·) is not a lower bound on the function

Z(w−i,v−i)(·). This implies that there is an active bid (wj , vj) such that vj < C−i(wj). j 6= i since i

is not active and is not defining the function Z(w−i,v−i)(·). We claim that if supplier j bids in some

region Alh, it cannot be at equilibrium. Indeed, we can use Equation (12), in particular,

dJlh

dyj−
≥ (fj − vl) + (cj − wl)F (yj−),

dJlh

dyj+
≤ (vh − fj) + (wh − cj)F (yj+).

If this is an equilibrium, then j’s bid in Alh must be such that (fj − vl) + (cj − wl)F (yj−) ≤ 0

and (vh − fj) + (wh − cj)F (yj+) ≥ 0. This is equivalent to

fj ≤ vl + (vj − vl)
cj − wl

wj − wl
,

or if l = 0, fj + cj ≤ vk + wk for some k, and

fj ≤ vh + (vj − vh)
wh − cj

wh − wj
.

But if all this feasible area is not strictly below C−i(·), we can find some other supplier k bidding

next to j that also satisfies vk < C−i(wk). By repeating the argument, we must find a third supplier

l satisfying vl < C−i(wl) that is not j (so no cycling possible). When we reach the supplier with

the smallest w or with the biggest w (the dummy supplier, N + 1), we reach a contradiction: for

the smallest w, we cannot find a different supplier satisfying the condition, for the dummy supplier

vN+1 = fN+1 = 0 = C−i(cN+1) = C−i(wN+1) = C−i(p). Hence j cannot be in equilibrium, and

this is a contradiction.

Therefore, the function C−i(·) lies below the function Z(w−i,v−i)(·). This implies that i cannot

be efficient, since it is not needed to define the function C−i(·), and thus is not a winning point of

{(c1, f1), . . . , (cN , fN ), (p, 0)}.

Proposition 4

Proof. Using Proposition 3, we know that every supplier is active in equilibrium.

If the proposition was false, we could find suppliers i and j such that ci < cj and wi > wj . We

may furthermore assume without loss of generality that these are consecutive bidders, i.e. there is

no bid (w, v) with wj < w < wi. To see this, assume that the active suppliers are indexed such that

w1 ≤ . . . ≤ wt and in case of a tie, sorted by increasing execution cost c.

Select a pair (i, j) such that i+1 < j with wi < wj and ci > cj . One of the following three cases

is possible.
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• The pair (i, i + 1) satisfies wi < wi+1 and ci > ci+1 and then (i, i + 1) are consecutive bidders.

• wi < wi+1 and ci ≤ ci+1. Then, it is the pair (i + 1, j) that satisfies ci+1 > cj and wi+1 < wj .

Hence, we can iterate this argument until we find consecutive bidders i and j such that ci < cj

and wi > wj .

• wi = wi+1 but then, by construction, ci ≤ ci+1. Hence, similarly to the previous case, we

iterate the argument with the pair (i + 1, j).

Since wi > wj and i and j are consecutive bidders, the bid of supplier j must be in the border

of some region Ali (where there is no active supplier between l and i because if there was one it

would not be active), where supplier l is active. Also, wi > wj implies that wj = wl and vj = vl is

optimal, from Theorem 2. But applying Proposition 2 yields that (wj , vj) belongs in the segment

[(cl, fl); (cj , fj)]. Similarly, supplier i bids in some region A
(w−i,v−i)
jh , with supplier h active and no

active suppliers between j and h. With the same argument as before, we have that (wi, vi) = (wh, vh)

and this bid belongs in the segment [(ci, fi); (ch, fh)].

Define,

F (ym) =
vj − vi

wi − wj
,

F (yj1) =
vj − fj

cj − wj
,

F (yi2) =
vi − fi

ci − wi
,

and we have that yj1 < ym < yi2 because i and j are active.

We can also define
F (yi1) =

vj − fi

ci − wj
,

F (yj2) =
fj − vi

wi − cj
.

Since ci < cj , and supplier i is efficient, we must have that fi ≤ fj + (cj − ci)F (yj1) because

F (yj1) is the slope of the line joining (cl, fl) to (cj , fj). Similarly, fj ≤ fi − (cj − ci)F (yi2). This

implies that yi1 ≤ yj1 < ym < yi2 ≤ yj2 as can be seen from Figure 7.

Finally, we apply Theorem 2. For this purpose, define the functions

φ(y1) =

∫ ym

y1

[F (y1)− F (u)]du

F (y1)− F (ym)

and

ψ(y2) =

∫ y2

ym

[F (u)− F (y2)]du

F (ym)− F (y2)
.
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Figure 7: Geometric situation of costs (ci, fi) and (cj , fj) in region Alh

Taking derivatives, we have, for y1 > ym and y2 < ym,

φ′(y1) = −f(y1)

∫ ym

y1

[F (u)− F (ym)]du

[F (y1)− F (ym)]2
< 0

ψ′(y2) = f(y2)

∫ y2

ym

[F (ym)− F (u)]du

[F (ym)− F (y2)]2
> 0.

Hence, φ(·) is non-increasing and ψ(·) is non-decreasing.

We now apply the last case of Theorem 2. Since supplier i bids (wi, vi) and not (wj , vj), we

have φ(yi1) ≤ ψ(yi2). Similarly, for j, φ(yj1) ≥ ψ(yj2). yi1 ≤ yj1 < ym < yi2 ≤ yj2 yields

φ(yi1) ≥ φ(yj1) ≥ ψ(yj2) ≥ ψ(yi2), and hence φ(yi1) ≤ ψ(yi2) implies that all inequalities are in fact

equalities. Therefore ci = cj which is a contradiction.

Theorem 3

Proof. Consider supplier 1 < i ≤ N . From Propositions 3 and 4, we know that at equilibrium it

will be bidding in region Ai−1 i+1 because otherwise one of the suppliers would be inactive or they

would not be sorted in the correct order. Let l = i− 1 and h = i + 1. Supplier i will in particular

bid in the border of this region, with yi− = ym or yi+ = ym as established in Theorem 2. yi− = ym

is equivalent to saying that it is bidding wi = wi+1 and vi = vi+1 and F (yi+) =
fi − vi+1

wi+1 − ci
. In
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this case, applying Proposition 2 yields that (vi, wi) belongs in the segment [(ci, fi); (ci+1, fi+1)].

Similarly, yi+ = ym implies that (vi, wi) belongs in the segment [(ci−1, fi−1); (ci, fi)], and this is of

course possible only if i > 1. For i = 1, only the first case can occur, i.e., w1 = w2, v1 = v2, y1− = 0

and y1+ such that F (y1+) =
f1 − v2

w2 − c1
. Again, Proposition 2 implies that (v1, w1) belongs in the

segment [(c1, f1); (c2, f2)].

Theorem 4

In the following proofs, let, for each demand distribution, for x ≤ y,

L(x, y) =

∫ y

x
[F (x)− F (u)]du

F (x)− F (y)
, (33)

and

R(x, y) =

∫ y

x
[F (u)− F (y)]du

F (x)− F (y)
= (y − x)− L(x, y). (34)

Observe that L(x, y) is non-increasing in x and R(x, y) is non-decreasing in y.

Proof. The loss in surplus occurs for every supplier i when (wi, vi) = (wi−1, vi−1) and (wi, vi) 6=
(wi+1, vi+1). For all other cases, we have that yi = y∗i . We have two different possible cases.

(A) The market allocation is such that yi < y∗i .

(B) The market allocation is such that yi > y∗i .

In case (A), Equation (16) holds since (wi, vi) = (wi−1, vi−1). Therefore, using y1 = y∗i−1, ym = yi

and y2 ≥ y∗i , and the notation of Equations (33) and (34),

L(y∗i−1, yi) ≥ R(yi, y2).

Since the function R(x, y) is non-decreasing in y and y2 ≥ y∗i , and L(x, y) is non-increasing in x and

0 ≤ y∗i−1,

R(yi, y2) ≥ R(yi, y
∗
i ) and L(0, yi) ≥ L(y∗i−1, yi).

Thus,

L(0, yi) ≥ R(yi, y
∗
i ).

Examine now the loss created by supplier i.
∫ y∗i

0
[F (u)− F (y∗i )]du =

∫ yi

0
[F (u)− F (y∗i )]du +

∫ y∗i

yi

[F (u)− F (y∗i )]du

≥
(
F (yi)− F (y∗i )

)
yi +

(
F (yi)− F (y∗i )

)
R(yi, y

∗
i )

≥
(
F (yi)− F (y∗i )

)(
L(0, yi) + R(yi, y

∗
i )

)

≥
(
F (yi)− F (y∗i )

)
2R(yi, y

∗
i ),

= 2
∫ y∗i

yi

[F (u)− F (y∗i )]du.
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Hence, we have that

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
2
∆ci

∫ y∗i

0
[F (u)− F (y∗i )]du.

In case (B), it must be that i < N . Since (wi, vi) 6= (wi+1, vi+1), Theorem 3 implies that

(wi+1, vi+1) = (wi+2, vi+2), and this means that wi ≤ ci ≤ ci+1 ≤ wi+1 ≤ ci+2, yi+1 = y∗i+1

and yi ≤ y∗i+1. We can now use Equation (17) for supplier i + 1 in order to derive a bound on the

loss. Here, ym = yi, y2 = y∗i+1 and y1 ≤ y∗i ,

R(yi, y
∗
i+1) ≥ L(y1, yi).

This implies that

R(yi, y
∗
i+1) ≥ L(y∗i , yi).

Now, note that

(wi+1 − wi)F (yi) = (ci+1 − wi)F (y1) + (wi+1 − ci+1)F (y∗i+1)

≥ (ci+1 − wi)F (y∗i ) + (wi+1 − ci+1)F (y∗i+1),

where the inequality is justified by ci+1 ≥ wi and y1 ≤ y∗i . This, together with ∆ci ≤ ci+1 −wi and

wi+1 − ci+1 ≤ ∆ci+1, implies that

∆ci[F (y∗i )− F (yi)] ≤ (ci+1 − wi)[F (y∗i )− F (yi)]

≤ (wi+1 − ci+1)[F (yi)− F (y∗i+1)]

≤ ∆ci+1[F (yi)− F (y∗i+1)].

Since
∫ y∗i+1

0
[F (u)− F (y∗i+1)]du =

∫ yi

0
[F (u)− F (y∗i+1)]du +

∫ y∗i+1

yi

[F (u)− F (y∗i+1)]du

≥
(
F (yi)− F (y∗i+1)

)(
L(y∗i , yi) + R(yi, y

∗
i+1)

)

≥
(
F (yi)− F (y∗i+1)

)
2L(y∗i , yi),

we have that

∆ci+1

∫ y∗i+1

0
[F (u)− F (y∗i+1)]du ≥ ∆ci

(
F (y∗i )− F (yi)

)
2L(y∗i , yi),

and hence

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
2
∆ci+1

∫ y∗i+1

0
[F (u)− F (y∗i+1)]du.

Since yi+1 = y∗i+1, this completes the proof of the bound for any border distribution.
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Proof of Theorem 5

Let F be the set of log-concave distributions. We present two lemmas which, combined, provide

the proof of the theorem.

Lemma 1 When all suppliers are efficient, then in every equilibrium of the game

∆U ≤ 25%U∗,

provided that for each 0 ≤ x ≤ y ≤ z, such that L(x, y) ≥ R(y, z), where the functions L and R are

defined in Equations (33) and (34) respectively,
[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]
−

[
F (x)− F (y)

]
R(x, y) ≤ 0 (35)

Proof. Assume that the condition defined in Equation (35) is satisfied for all 0 ≤ x ≤ y ≤ z, such

that L(x, y) ≥ R(y, z).

The loss in surplus U occurs when yi 6= y∗i . That happens when a supplier i bids (wi, vi) =

(wi−1, vi−1) and (wi, vi) 6= (wi+1, vi+1). When (wi, vi) 6= (wi−1, vi−1) and (wi, vi) = (wi+1, vi+1),

yi = y∗i .

For the situation when loss is created, since bidding with supplier i − 1 yields the maximum

profit for supplier i, then by Theorem 2, we have that

L(y∗i−1, yi) ≥ R(yi, y2), (36)

where y2 is defined by F (y2) =
fi − vi+1

wi+1 − ci
. We have two different possible cases.

(A) The market allocation is such that yi < y∗i .

(B) The market allocation is such that yi > y∗i .

In case (A), since y2 ≥ y∗i and y∗i−1 ≥ 0, Equation (36) yields that L(0, yi) ≥ R(yi, y
∗
i ).

We claim that in this case (A), we have

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4

∫ y∗i

0
[F (u)− F (y∗i )]du. (37)

This is equivalent to saying that

[
F (yi)− F (y∗i )

]
R(yi, y

∗
i ) ≤

1
4





[
1− F (yi)

]
R(0, yi)

+
[
F (yi)− F (y∗i )

][
R(0, yi) + L(0, yi)

]

+
[
F (yi)− F (y∗i )

]
R(yi, y

∗
i )





,

or put differently,
[
F (yi)− F (y∗i )

][
3R(yi, y

∗
i )−R(0, yi)− L(0, yi)

]
≤

[
1− F (yi)

]
R(0, yi).
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Since R(yi, y
∗
i ) ≤ L(0, yi), to prove Equation (37), it is sufficient to show that

[
F (yi)− F (y∗i )

][
2L(0, yi)−R(0, yi)

]
≤

[
1− F (yi)

]
R(0, yi),

which is exactly the condition that we assumed true. This concludes the proof of case (A), i.e.,
∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4

∫ y∗i

0
[F (u)− F (y∗i )]du.

In case (B), it must be that i < N . Since (wi, vi) 6= (wi+1, vi+1), Theorem 3 implies that

(wi+1, vi+1) = (wi+2, vi+2), and this means that wi ≤ ci ≤ ci+1 ≤ wi+1 ≤ ci+2, yi+1 = y∗i+1 and

yi ≤ y∗i+1. We can now use Theorem 2, for supplier i + 1, to yield

R(yi, y
∗
i+1) ≥ L(y1, yi) ≥ L(y∗i , yi),

where y1 is defined by F (y1) =
vi − fi+1

ci+1 − wi
, which implies that y1 ≤ y∗i .

We claim that when R(yi, y
∗
i+1) ≥ L(y∗i , yi), then

∆ci

∫ yi

y∗i
[F (y∗i )− F (u)]du ≤ 1

4
∆ci+1

∫ y∗i+1

y∗i
[F (u)− F (y∗i+1)]du. (38)

Since the right-hand side is non-decreasing in y∗i+1, it is sufficient to show that when R(yi, y
∗
i+1) =

L(y∗i , yi), Equation (38) is satisfied.

We must first note that

(wi+1 − wi)F (yi) = (ci+1 − wi)F (y1) + (wi+1 − ci+1)F (y∗i+1)

≥ (ci+1 − wi)F (y∗i ) + (wi+1 − ci+1)F (y∗i+1),

where the inequality is justified by ci+1 ≥ wi and y1 ≤ y∗i . This, together with ∆ci ≤ ci+1 −wi and

wi+1 − ci+1 ≤ ∆ci+1, implies that

∆ci

[
F (y∗i )− F (yi)

]
≤ (ci+1 − wi)

[
F (y∗i )− F (yi)

]

≤ (wi+1 − ci+1)
[
F (yi)− F (y∗i+1)

]

≤ ∆ci+1

[
F (yi)− F (y∗i+1)

]
.

Thus, in order to prove Equation (38), it is sufficient to show that
∫ yi

y∗i
[F (y∗i )− F (u)]du

[F (y∗i )− F (yi)]
≤ 1

4

∫ y∗i+1

y∗i
[F (u)− F (y∗i+1)]du

F (yi)− F (y∗i+1)
,

or equivalently,

[
F (yi)− F (y∗i+1)

]
L(y∗i , yi) ≤ 1

4





[
F (yi)− F (y∗i+1)

]
R(yi, y

∗
i+1)

+
[
F (yi)− F (y∗i+1)

][
L(y∗i , yi) + R(y∗i , yi)

]

+
[
F (y∗i )− F (yi)

]
R(y∗i , yi)





.
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Using that L(y∗i , yi) = R(yi, y
∗
i+1), it is sufficient to show that

[
F (yi)− F (y∗i+1)

][
2L(y∗i , yi)−R(y∗i , yi)

]
≤

[
F (y∗i )− F (yi)

]
R(y∗i , yi).

Again, using the condition defined in Equation (35), this is non-positive. This implies that in case

(B), for all y∗i , yi, y
∗
i+1 such that R(yi, y

∗
i+1) ≥ L(y∗i , yi),

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4
∆ci+1

∫ y∗i+1

0
[F (u)− F (y∗i+1)]du.

Finally, putting together cases (A) and (B), we have

∆U =
N∑

i=1

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4

N∑

i=1

∆ci

∫ y∗i

0
[F (u)− F (y∗i )]du

≤ 1
4
U∗.

Lemma 2 When f is log-concave, then for each 0 ≤ x ≤ y ≤ z, such that L(x, y) ≥ R(y, z),
[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]
−

[
F (x)− F (y)

]
R(x, y) ≤ 0.

Proof. Let’s examine the worst-case scenario. For a fixed x, we claim that

sup
x≤y≤z,F∈F





[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]

−
[
F (x)− F (y)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≤ R(y, z)

(39)

Clearly, we only need to examine the case when 2L(x, y) ≥ R(x, y). The objective is then

maximized for the largest z feasible, given y and F . This implies that at the maximum, L(x, y) =

R(y, z), since R(y, z) is non-decreasing in z.

Let’s now examine the worst-case scenario in terms of distribution. We first need to define the

following subclass of log-concave distributions.

Definition 4 A distribution is truncated exponential on I ⊂ R+ if and only if there are β, K, a, b,

a < b, such that for t ∈ I,

f(t) = Keβt1[a,b](t).

Without loss of generality, we can assume that x = 0, since for any other x ≥ 0 we could prove

the lemma with a shifted distribution.

Claim 1 In the problem posed by Equation (39), given optimal x = 0, y, z, we claim that at the

optimum f must be truncated exponential in [y, z], with a rate equal to f ′(y)/f(y).
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Proof. We have two possible cases. Either F (z) = 0 or not. If F (z) = 0, F (y) > 0, otherwise there

is nothing to show. Assume that f is not truncated exponential. Define the distribution equal to f

on [0, y] and to the truncated exponential

gγ(t) = f(y)ef ′(y)/f(y)(t−y)1[y, γ]

on [y,∞). Since f is log-concave, then f(t) ≤ gγ(t) for y ≤ t ≤ γ.

Define Gγ such that

Gγ(t) = F (y)−
∫ t

y
gγ(u)du =

∫ z

y
f(u)du−

∫ t

y
gγ(u)du

This is clearly increasing in γ. We have Gy(z) > 0 and Gz(z) < 0. We can thus find γ such that

Gγ(z) = 0, and hence for this particular γ,

F (y)− F (z) =
∫ z

y
gγ(u)du.

Moreover, L(0, y) = R(y, z) <

∫ z

y
[Gγ(u)−Gγ(z)]du

Gγ(y)−Gγ(z)
. This implies that for the log-concave

distribution gγ , we can decrease z to z′ with gγ(z′) > 0, while still satisfying the feasibility constraint,

thus increasing F (y)− F (z) to a larger quantity Gγ(y)−Gγ(z′). Thus f cannot be the worst-case

distribution. The only remaining possibility is that f is truncated exponential on [y,∞), with rate

f ′(y)/f(y).

Finally, if F (z) > 0, f(z) > 0 and F (y) > 0. Assume that f is not exponential. Define, for

f ′(y)/f(y) ≥ γ ≥ f ′(z)/f(z), the distribution equal to f on [0, y] and [z,∞), and to

gγ(t) = min
{

f(y)ef ′(y)/f(y)(t−y), f(z)eγ(t−z)
}

on [y, z]. This is clearly log-concave. Fix γ such that

F (y)− F (z) =
∫ z

y
gγ(u)du.

This implies that

Gγ(t) = F (z) +
∫ z

t
gγ(u)du

is always greater than F (t). Thus L(0, y) = R(y, z) ≤

∫ z

y
[Gγ(u)−Gγ(z)]du

Gγ(y)−Gγ(z)
. Hence, for the

log-concave distribution gγ , we can decrease z while still satisfying the feasibility constraint, thus

increasing F (y)−F (z) to a larger quantity. Thus f cannot be the worst-case distribution. The only

possibility is that f is exponential, with rate f ′(y)/f(y).

In any case, we have showed that for the worst case distribution must be truncated exponential

in [y, z].
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Claim 2 In the problem posed by Equation (39), given optimal x, y, z, we claim that at the optimum

f must be truncated exponential in [x, y].

Proof. Equation (39) can be rewritten as

sup
x≤y≤z,F∈F





[
F (y)− F (z)

]
2R(y, z)

−
[
F (x)− F (z)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≤ R(y, z)

The proof is similar to the proof of the previous claim.

We have two cases to address: either f(x) = 0 or not. When f(x) = 0, assume that f is not

truncated exponential. Define the distribution equal to f on [y,∞) and to the truncated exponential

gγ(t) = f(y)ef ′(y)/f(y)(t−y)1[γ, y]

on [0, y]. Since f is log-concave, then f(t) ≤ gγ(t) for γ ≤ t ≤ y.

Define Gγ such that

Gγ(t) = F (y) +
∫ y

t
gγ(u)du.

This is clearly decreasing in γ. We have Gy(x) < 1 and Gx(x) > 1. We can thus find γ such that

Gγ(x) = 1, and hence for this particular γ,

1− F (y) = F (x)− F (y) =
∫ y

x
gγ(u)du.

Moreover, R(y, z) = L(x, y) >

∫ y

x
[Gγ(x)−Gγ(u)]du

Gγ(x)−Gγ(y)
. This implies that for the log-concave

distribution gγ , we can increase x to x′ with gγ(x′) > 0, while still satisfying the feasibility constraint,

thus decreasing
[
F (x) − F (z)

]
R(x, y) to a smaller quantity. This is true because F (x) = 1 goes

down to Gγ(x′) and R(x, y) = (y−x)−L(x, y) = (y−x)−R(y, z) goes down as well. Thus f cannot

be the worst-case distribution. The only remaining possibility is that f is truncated exponential on

[x, y].

The last case to consider is that f(x) > 0. Assume that f is not exponential. Define, for

f ′(x)/f(x) ≥ γ ≥ f ′(y)/f(y), the distribution equal to f on [0, x] and [y,∞), and to

gγ(t) = min
{

f(y)ef ′(y)/f(y)(t−y), f(x)eγ(t−x)
}

on [x, y]. This is clearly log-concave. Fix γ such that

F (y)− F (z) =
∫ y

x
gγ(u)du.

This implies that

Gγ(t) = F (y) +
∫ y

t
gγ(u)du
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is always greater than F (t). Thus R(y, z) = L(x, y) >

∫ y

x
[Gγ(x)−Gγ(u)]du

Gγ(x)−Gγ(y)
. Hence, for the

log-concave distribution gγ , we can increase x while still satisfying the feasibility constraint, thus

decreasing
[
F (x)−F (z)

]
R(x, y) to a smaller quantity. Thus f cannot be the worst-case distribution.

The only possibility is that f is exponential.

In any case, we have showed that for the worst case distribution must be truncated exponential

in [x, y].

Having proved these two claims, we are ready to complete the proof. The worst-case is obtained

for a truncated exponential distribution. We have three different cases to address:

(i) The rate is negative, i.e. f(t) = Ke−βt1[a,b](t) for some parameters K, a, b, β with a < b and

β > 0.

(ii) The rate is positive, i.e. f(t) = Keβt1[a,b](t) for some parameters K, a, b, β with a < b and

β > 0.

(iii) The rate is zero, in which case the distribution is uniform.

We will start with the analysis of case (i). Hence, assume that f(t) = Ke−βt1[a,b](t) for a < b

and β > 0. It is clear that for x ≤ a < y < b, L(x, y) = L(a, y) and that for a < x < b ≤ y,

R(x, y) = R(x, b). Thus, we can without loss of generality consider the case where a = 0 ≤ yi ≤
y∗i ≤ b.

For this distribution, for all a ≤ x ≤ y ≤ b,

L(x, y) =
(y − x)e−βx

e−βx − e−βy
− 1

β
,

and

R(x, y) =
1
β
− (y − x)e−βy

e−βx − e−βy
.

Define the following functions

P1(t) =
et − 1

t
and P2(t) =

et − 1− t

t2
.

It is easy to show that these are analytical functions on R, infinitely differentiable, increasing and

convex. Using this notation, we can express

L(x, y) =
1
β

[ 1
P1(−β(y − x))

− 1
]
,

and

R(x, y) =
1
β

[
1− 1

P1(β(y − x))

]
,

By writing ∆1 = β(y − x) and ∆2 = β(z − y), the constraint L(x, y) = R(y, z) thus becomes

1
P1(−∆1)

+
1

P1(∆2)
= 2,
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On the other hand, the objective becomes
[
F (y)− F (z)

]
2R(y, z)−

[
F (x)− F (z)

]
R(x, y)

=
e−βy

β2




(
1− e−∆2

) (
2

P1(−∆1)
+

1
P1(∆1)

− 3
)

− (
e∆1 − 1

)(
1− 1

P1(∆1)

)




We need to show that for ∆1, ∆2 ≥ 0 satisfying the constraint, we have

(1− e−∆2)
(e∆1 − 1)

(
2

P1(−∆1)
+

1
P1(∆1)

− 3
)
−

(
1− 1

P1(∆1)

)
≤ 0.

Notice first that since 1/P1 is convex, we have that ∆2 ≥ ∆1. Note also that

1− 1
P1(∆2)

=
∆2P2(∆2)
P1(∆2)

=
(1− e−∆2)P2(∆2)
P1(−∆2)P1(∆2)

,

and
1

P1(−∆1)
− 1 =

∆1P2(−∆1)
P1(−∆1)

=
(e∆1 − 1)P2(−∆1)
P1(−∆1)P1(∆1)

.

Finally, we remark that for all t,

P2(t)
P1(−t)P1(t)

=
P2(t)

P2(−t) + P2(t)
,

which is an increasing function, because P2 is increasing.

The constraint on ∆1, ∆2, together with ∆2 ≥ ∆1, thus implies that

(1− e−∆2)P2(∆1)
P1(−∆1)P1(∆1)

≤ (1− e−∆2)P2(∆2)
P1(−∆2)P1(∆2)

=
(e∆1 − 1)P2(−∆1)
P1(−∆1)P1(∆1)

.

Thus (1− e−∆2)/(e∆1 − 1) ≤ P2(−∆1)/P2(∆1). Hence it is sufficient to show that for all t ≥ 0,

P2(−t)
P2(t)

( 2
P1(−t)

+
1

P1(t)
− 3

)
≤ 1− 1

P1(t)
,

or equivalently, using that P1(−t) = e−tP1(t), et = 1 + tP1(t) and P1(t) = 1 + tP2(t),

t4P2(−t)
(
2P1(t)− 3P2(t)

)
≤ t4P2(t)2. (40)

Since

t4P2(t)2 = e2t − 2et − 2tet + 1 + 2t + t2 =
∞∑

k=4

tk

k!

[
2k − 2− 2k

]
,

t4P2(−t)P1(t) = t(−et − e−t + tet + 2− t) =
∞∑

k=4

tk

k!

[
k(k − 1)− k(1− (−1)k)

]
,

t4P2(−t)P2(t) = −et − e−t + tet − te−t + 2− t2 =
∞∑

k=4

tk

k!

[
(k − 1)(1 + (−1)k)

]
,
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we have,

−t4P2(−t) (2P1(t)− 3P2(t)) + t4P2(t)2

=
∞∑

k=4

tk

k!

[
2k − 2− 2k + 3(k − 1)(1 + (−1)k)− 2k(k − 1) + 2k(1− (−1)k)

]
.

The term under brackets is always non-negative for k ≥ 4. Indeed, 1+(−1)k ≥ 0 and 1−(−1)k ≥ 0

for all k, and 2k − 2− 2k − 2k(k − 1) = 2k − 2− 2k2 ≥ 0 for k ≥ 7. Moreover,

2k − 2− 2k2 + 3(k − 1)(1 + (−1)k) + 2k(1− (−1)k) =





0 for k = 4,

0 for k = 5,

20 for k = 6.

This shows that Equation (40) is satisfied for t ≥ 0. Thus, when F is a truncated exponential

with negative rate, i.e. case (i),

sup
x≤y≤z





[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]

−
[
F (x)− F (y)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≥ R(y, z)

Case (ii) can be analyzed similarly. In this case, using the same notation, ∆1 = β(y − x) and

∆2 = β(z−y), where β is now the positive rate of the exponential, the constraint is tight and hence

equivalent to
1

P1(∆1)
+

1
P1(−∆2)

= 2,

We must show now that

(e∆2 − 1)
(1− e−∆1)

(
2P1(−∆1)− 3P2(−∆1)

)
≤ P2(−∆1).

Now, ∆2 ≤ ∆1 and this implies that (e∆2 − 1)/(1 − e−∆1) ≤ P2(∆1)/P2(−∆1). Hence, we must

show that for all t ≥ 0,

P2(t)
(
2P1(−t)− 3P2(−t)

)
≤ P2(−t)2,

or equivalently, using that P2(−t)et = P1(t)− P2(t),

t4etP2(t)
(
3P2(t)− P1(t)

)
≤ t4

(
P1(t)− P2(t)

)2
.
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Since

t4P2(t)2 =
∞∑

k=4

tk

k!

[
2k − 2− 2k

]
,

t4etP2(t)2 =
∞∑

k=4

tk

k!

[
3k − 2k+1 − k2k + 1 + 2k + k(k − 1)

]
,

t4P2(t)P1(t) =
∞∑

k=4

tk

k!

[
k2k−1 − 2k − k(k − 1)

]
,

t4etP2(t)P1(t) =
∞∑

k=4

tk

k!

[
k3k−1 − k2k − k(k − 1)2k−2 + k + k(k − 1)

]
,

t4P1(t)2 =
∞∑

k=4

tk

k!

[
k(k − 1)2k−2 − 2k(k − 1)

]
,

we must show that

∞∑

k=4

tk

k!




k(k − 1) · 2k−2 − 2k(k − 1)

−2k · 2k−1 + 4k + 2k(k − 1)

+2k − 2− 2k

+k · 3k−1 − k · 2k − k(k − 1) · 2k−2 + k + k(k − 1)

−3k+1 + 3 · 2k+1 + 3k · 2k − 3− 6k − 3k(k − 1)



≥ 0.

The coefficients in the brackets are equal to

(k − 9)3k−1 + (k + 7)2k + (−2k2 − k − 5)

They are clearly non-negative for k ≥ 9. For smaller values, we have

(k − 9)3k−1 + (k + 7)2k + (−2k2 − k − 5) =





0 for k = 4,

0 for k = 5,

20 for k = 6,

224 for k = 7

1512 for k = 8.

Hence, for all t ≥ 0,

t4etP2(t)
(
3P2(t)− P1(t)

)
≤ t4

(
P1(t)− P2(t)

)2
,

and thus, when F is a truncated exponential with positive rate, i.e. case (ii),

sup
x≤y≤z





[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]

−
[
F (x)− F (y)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≤ R(y, z)

Case (iii) is straightforward. When the distribution is uniform, L(x, y) = R(x, y) = (y−x)/2 for

all x ≤ y. Also the condition L(x, y) ≥ R(y, z) is equivalent to z − y ≤ y − x. Thus,
[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]
−

[
F (x)− F (y)

]
R(x, y) =

1
2
(y − x)(z + x− 2y) ≤ 0.
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Theorem 6

Proof. Supplier i is active in this equilibrium. Since the demand follows a border distribution,

supplier i bids in the boundary of some region Alh constructed with all the bids except i’s. If the

bid (wi, vi) belongs to more than one region, choose Alh with l and h active. We must consider two

cases, either there is no supplier in the lower envelope between the bids of l and h, or there is one.

In the first case, there is j, j being l or h, such that j is active, and (wi, vi) = (wj , vj), from

Theorem 2. From Proposition 2, (wi, vi) belongs in the segment [(ci, fi); (cj , fj)].

In the second case, there is one supplier, k on the lower envelope between l and h such that the bid

(wi, vi) is in the border of Alh and Alk or Alh and Akh. k is thus inactive because of supplier i, and

either the bids of l, k and i are aligned, or those of i, k and h. Such a situation is depicted in Figure

8. Hence, we find j, j being l or h, active, such that (wi, vi) is equal to (wj , vj)+ θ(wk−wj , vk− vj)

for some non-negative θ.
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Figure 8: Suppliers l and h are active and supplier k is turned inactive by supplier i’s bid.
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