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Myopic Inventory Policies Using
Individual Customer Arrival Information1

We investigate optimality of myopic policies using the single-unit decomposition approach
in inventory management. We derive, under certain conditions, closed-form replenishment
decisions, that we call a base-probability policy. That is, the order associated with a given
customer is placed if and only if its arrival probability within the lead-time is higher than a
threshold.

1. Introduction

Placing inventory buffers in the supply chain allows a better matching between supply and

demand. The size of these buffers can be adjusted to provide an appropriate level of service

to customers. In order to quantify replenishment decisions, traditional inventory models

associate a cost to holding inventory and a back-ordering cost for making the customers wait

for their orders. Holding costs account for the cost of working capital, invested in a product

that has not been sold yet. Back-ordering costs, on the other hand, put a price to the waiting

of the customer, who arrived before the product was available. By balancing these two costs

appropriately, inventory is managed at the lowest cost.

When there are no set-up costs associated with an order, the optimal replenishment

policy is often a base-stock policy: at each time period, there is an optimal base-stock level,

and one should raise the current inventory level to that target level, or do nothing if the

current level is already above the target. The inventory management literature is extensive

on this point. The result is true in multi-echelon systems, see the seminal paper of Clark

and Scarf [3]; for i.i.d. or correlated customer demands, see Chen and Song [2] or Song and

Zipkin [10]; for fixed or random lead-times, see Kaplan [5]; and for non-stationary costs and

prices, see Section 9.4.7 of Zipkin [13].

In general, closed-form solutions describing the base-stock level are available for simple

situations, e.g., when lead-time is fixed, costs are stationary and demand is i.i.d. When the

situation is non-stationary, very few formulas to compute the base-stock level analytically are

available; one must often use numerical optimization or simulation. In particular, computing

1An older version of this work was titled ”Inventory Management by Synchronizing Replenishment Orders
with Customers”.
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the optimal base-stock levels requires formulating a dynamic program (DP) that may suffer

from the curse of dimensionality, as non-stationarity may expand the dimension of the state

space in the DP.

Interestingly, some recent publications have incorporated new proof methods that avoid

the dimensionality problem. They generalize the optimality of base-stock policies to dif-

ferent situations, see Axsater [1] and Muharremoglu and Tsitsiklis [8] and [9]. The crucial

observation is that one can match each order placed by the inventory manager with a given

customer. For example, the 5-th order will fulfill the 5-th unit of demand. Using this match-

ing, as shown in Muharremoglu and Tsitsiklis [8], one can decouple the ordering decision

unit by unit, and decide whether a unit should be ordered independently of all other units.

This approach allows to define several simpler dynamic program with a smaller state space.

In this paper, we build on the approach of Muharremoglu and Tsitsiklis [8], in a context

of single echelon, uncertain demand, cost and price, and fixed lead-time. While their paper

focuses on showing the optimality of base-stock policies, we concentrate on operationaliz-

ing the ordering policies, by providing, under certain conditions, closed-form formulas to

determine whether to order or not.

Specifically, within the single-unit decomposition approach, we provide conditions under

which a myopic policy is optimal. Some of these conditions are related to the ones provided

in the early papers of Veinott [11] and [12], and Lovejoy [7]. However, our condition on

the demand process is more general than what is usually assumed: Karlin [6], Veinott [12]

or Song and Zipkin [10], for example, require that the demand is stochastically increasing,

while we only require that the arrival probability of a certain customer increases over time.

Furthermore, we develop a simple analytical formula to decide whether to place an order

or not: for each specific customer, an order should be placed if and only if its probability

of arrival within the lead-time is high enough. While this is theoretically equivalent to

an optimal base-stock level, conceptually it allows the replenishment decision to be taken

customer by customer.

The paper starts with the description of the model in Section 2. Section 3 develops the

main results. Finally, we conclude the paper with a discussion in section 4. All the proofs

can be found in the Appendix.

2



2. The Model

Consider a firm that distributes a single product to customers, in an infinite horizon setting.

This product is procured from an external supplier who is located far away, and takes L

time units to deliver an order to the firm. Lead-time is fixed, but the methodology could

be used in a similar way for stochastic lead-times, as soon as the ordering sequence and the

receiving sequence are identical, i.e., orders do not cross, see Kaplan [5] and Muharremoglu

and Tsitsiklis [9]. The inventory is managed using a standard periodic-review system with

back-ordering. At each time period t = 1, . . . ,∞, the firm first checks the inventory level,

places an order qt to the supplier, which will be received at time t + L. Then customers

arrive, and are served if there is stock on-hand; otherwise, they are left on a waiting line,

and will be served first-come-first-served when more inventory arrives. Finally, at the end of

the period, a per-unit inventory holding fee h (fixed and unrelated to the purchasing cost,

since the capital cost of inventory is taken into consideration by a discount factor) and a

per-unit backlogging penalty b (also fixed) are charged.

At each period t, all the information on past and present costs, prices and demands

is available, and denoted It. Based on this, the firm can generate a distribution on future

events. We denote by PIt(A) the probability of event A conditional on the present information

It. Similarly, EIt(X) denotes the expectation of a random variable X conditional on the

information It.

At each time period t, a stochastic number of customers Dt arrives. Its distribution

is completely determined by It. In addition, these customers come in a given sequence.

We denote by Tk the arrival time of the k-th customer. It is clear that all distributional

information about the demand process can be translated into the arrival process, since for

all k, t′,

PIt

(
t′∑

τ=1

Dτ ≥ k

)
= PIt

(
Tk ≤ t′

)
. (1)

The per-unit purchasing cost charged by the supplier is denoted by Ct, and can change

stochastically from period to period. Its evolution depend exclusively on It. Thus, the

expected cost for period t + ∆t, at time t, is denoted by EItCt+∆t.

Similarly, there is a per-unit selling price of Pt, that can also change stochastically over

time. When a customer that arrives at t can be served immediately, the firm receives Pt

immediately. However, if there is no inventory available on-hand, and the customer is served
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at t′, the firm receives only r(Pt, Pt′), at the delivery time. This is a flexible approach to

prices, that allows to charge the price on the arrival time, i.e., r(Pt, Pt′) = Pt, or the price

on the delivery time, i.e., r(Pt, Pt′) = Pt′ .

Finally, we consider a discount rate of α across periods, corresponding to the time-value

of money. As it is common in the inventory management literature, we assume that the firm

is risk-neutral. The objective is to maximize the net present value (NPV) of the firm, also

called discounted profit-to-go, by selecting the most appropriate inventory policy, i.e., the

ordering time tk of the k-th order,

maxt1,t2,... EI0





∑∞
t=1 αt




h

( ∞∑

k=1

1tk+L≤t≤Tk

)
+ b

( ∞∑

k=1

1Tk≤t≤tk+L

)

−Ct

( ∞∑

k=1

1t=tk

)
+

∞∑

k=1

r
(
PTk

, Pmax{Tk,tk+L}
)
1t=max{Tk,tk+L}








=
∞∑

k=1

EI0

{ ∞∑
t=1

αt

[
h1tk+L≤t≤Tk

+ b1Tk≤t≤tk+L

−Ct1t=tk + r
(
PTk

, Pmax{Tk,tk+L}
)
1t=max{Tk,tk+L}

]}
,

(2)

where 1A = 1 if A is true and 0 otherwise. Here, we can use the decomposition approach

of Muharremoglu and Tsitsiklis [8]. This is possible since by lead-time is fixed and the back-

logging assumption guarantees that the demand process is independent of the order process.

Thus, the maximization problem of Equation (2) can be decomposed in an independent

problem for each k, as follows,

EI0

{
h

(
Tk∑

t=tk+L

αt

)
+ b

(
tk+L∑
t=Tk

αt

)
− Ctkα

tk + r
(
PTk

, Pmax{Tk,tk+L}
)
αmax{Tk,tk+L}

}
. (3)

Assuming that the first k − 1 orders have been placed, and that we need to place the

k-th, consider the decision at time period t. The decision tree for ordering the k-th unit can

be summarized in what follows.

1. Place the order now, at period t. In that case, the discounted profit-to-go of this

decision is

U(k, t, It) := EIt

{
h

(
Tk∑

τ=t+L

αt

)
+ b

(
t+L∑

τ=Tk

αt

)
− Ctα

t + r
(
PTk

, Pmax{Tk,t+L}
)
αmax{Tk,t+L}

}
.

2. Or wait and see; in that case, we obtain updated information on the demand, price

and cost processes, and we face the same decision (order or not) at period t + 1. That
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is, we can either place the order at t + 1, with discounted profit

EIt+1

{
h

(
Tk∑

τ=t+L+1

αt

)
+ b

(
t+L+1∑
τ=Tk

αt

)
− Ct+1α

t+1 + r
(
PTk

, Pmax{Tk,t+L+1}
)
αmax{Tk,t+L+1}

}
,

or wait and see (and go into the next branch in the tree).

We see that purchasing an item at t amounts to comparing the profit-to-go of this decision,

denoted U(k, t, It), with the profit-to-go of delaying the purchase. Let V (k, t, It) be the

value of purchasing the k-th item at t or later, with the information at time t. Hence,

the optimization program can be expressed as the following dynamic program, solved by

backwards recursion:

V (k, t, It) = max{U(k, t, It),EItV (k, t + 1, It+1)}. (4)

Note that in the standard inventory management approach, the state space includes the

inventory level and the demand forecast for all future periods, i.e., we must consider the

probability that Dτ = d for each d and for each period τ . In our model, we decompose the

problem for each unit k, and thus we only require the forecast distribution of Tk. Of course,

we need to compute a DP for each different k. In addition, this approach allows us to obtain

analytical formulas for each k, as shown in the next section.

3. Optimality of Myopic Policies

Under a number of assumptions, we can characterize V (k, t, It) in a simple way. These as-

sumptions allow to simplify the dynamic program so that a myopic, one-step look-ahead,

policy is optimal, and thus a closed-form formula is available. In the literature, see Veinott

[11] or [12] for example, a myopic policy is shown to be optimal when the demand is stochas-

tically increasing and some monotonicity requirements are placed on the cost and price

processes.

Our regularity assumptions are similar. First, we require the demand process to exhibit

a monotonicity property, which is weaker than being stochastically increasing in time: we

assume that the arrival time of each customer minus the current time is stochastically non-

increasing. Second, we need the price and cost processes to satisfy a monotonicity property,

similar to the literature.

We start with a preliminary lemma.
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Lemma 1 Consider for all k, 1
{

U(k, t, It) − EItU(k, t + 1, It+1) ≥ 0
}
, i.e., 1 if the event

occurs, and 0 otherwise, and assume that it is stochastically non-decreasing in t (in each

sample path). Then a myopic policy is optimal, i.e., U(k, t, It) = V (k, t, It) if and only if

U(k, t, It) ≥ EItU(k, t + 1, It+1).

This lemma provides a sufficient condition for myopic policies to be optimal. To obtain the

desired condition for Lemma 1, we focus on the following class of demand processes.

Assumption 1 Any customer gets closer when time advances. For all k, for all ∆t,

for each sample path,

PIt(Tk ≤ t + ∆t) ≤ PIt+1(Tk ≤ t + ∆t + 1). (5)

That is, the chances of customer k arriving before ∆t units gets larger as time advances,

regardless of the information acquired between t and t + 1.

The interpretation is the following. Consider at t, with all the available information, the

probability that the k-th customer arrives within ∆t periods. Then, when one incorporates

the information update at t + 1, the probability of arrival within the same ∆t periods must

go up, regardless of the information update. That is, the customer’s likelihood of arrival can

never decrease. This assumption is weaker than having stochastically increasing demands,

used in Veinott [12], Karlin [6] or Song and Zipkin [10]. Indeed, consider that the demand

arriving per period is independent over time, and stochastically increasing. Without loss of

generality, it is sufficient to analyze t = 1 and k to show that Assumption 1 holds. For any

d1 ≥ 0,
P1(Tk ≤ τ) = P1(D1 + . . . + Dτ ≥ k)

≤ P1(D2 + . . . + Dτ+1 ≥ k) since Dτ+1 º D1

≤ P2(D2 + . . . + Dτ+1 ≥ k − d1)
= P2(Tk ≤ τ + 1|D1 = d1).

In addition, it contains demand processes that are not stochastically increasing. For example,

when the demand process is generated by customer arrivals with exponential inter-arrival

times of decreasing rate as the customer rank increases, then Assumption 1 is satisfied (see

example below), but the demand is stochastically non-increasing.

Some demand processes do not satisfy the assumption, such many ARMA processes.

Interestingly, these instances, in the case of ARMA, could be modified so that they fit the

assumption, see Johnson and Thompson [4]. By assuming some minimum level of demand,
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one is able to guarantee that the realized inventory levels are always below the myopic

base-stock levels, yielding optimality of myopic policies. Our assumption provides a similar

effect.

Also, the condition may be violated for heavy-tailed inter-arrival times, but is always

satisfied when the inter-arrival times have a non-decreasing failure rate, as show in the next

example.

Example 1 Non-decreasing failure rates. Assume that the demand is generated by

a queueing model of arrivals of consecutive customers. Assumption 1 is satisfied when

inter-arrival times are i.i.d. with a non-decreasing failure rate, i.e., P(T = t|T ≥ t) non-

decreasing. This holds for Poisson arrivals. Also, if p̄t is the probability that the inter-arrival

time is t or larger, then the condition is satisfied when

p̄t − p̄t+1

p̄t

≤ p̄t+1 − p̄t+2

p̄t+1

,

which is equivalent to
p̄t

p̄t+1

non-decreasing.

Furthermore, we can show that neither this condition nor the assumption is satisfied

for heavy-tailed inter-arrival distributions, i.e., when the decay of p̄t is slower than any

exponential, e.g. when p̄t =
1

1 + t
.

We use a second assumption to simplify the analysis. This is commonly assumed in the

inventory management literature.

Assumption 2 Price and demand processes are independent.

Under these assumptions, we can prove the following theorems.

Theorem 1 Assume that the price is determined when the order is made, i.e., r(Parriv, Pdeliv) =

Parriv. If Assumptions 1 and 2 hold, if Ct−αEItCt+1 is non-increasing for each sample path,

if for all τ ∈ [0, . . . , L − 1] EIt (Pt+τ − Pt+τ+1) is non-decreasing for each sample path, and

if EItPt+L is non-decreasing for each sample path, then the following is true:

(i) If it is optimal to order at t, it is also optimal to order at t + 1 regardless of the

information received between t and t + 1.
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(ii) Base-probability policy: the k-th order must be placed at time t if and only

b + Ct − αEItCt+1 ≤
L−1∑
τ=0

αL(1− α)EIt (Pt+τ − Pt+τ+1)PIt(Tk ≤ t + τ)

+
(
b + h + αL(1− α)EItPt+L

)
PIt(Tk ≤ t + L).

(6)

Theorem 2 Assume that the price is determined when the order is delivered, i.e., r(Parriv, Pdeliv) =

Pdeliv. If Assumptions 1 and 2 hold, and if
b + Ct − αEItCt+1

b + h + αLEIt(Pt+L − αPt+L+1)
is non-increasing

for each sample path, then the following is true:

(i) If it is optimal to order at t, it is also optimal to order at t + 1 regardless of the

information received between t and t + 1.

(ii) Base-probability policy: the k-th order must be placed at time t if and only if

b + Ct − αEItCt+1

b + h + αLEIt (Pt+L − αPt+L+1)
≤ PIt(Tk ≤ t + L). (7)

The theorems provide a closed-form condition for the replenishment decision. In fact,

Equations (6) and (7) are equivalent to U(k, t, It) − EItU(k, t + 1, It+1) ≥ 0. The meaning

of these equations is intuitive: when the k-th customer is getting close, measured by the

probability of arriving within a given number of periods, the order must be placed. We call

this a base-probability policy since the order is placed only when the arrival probability within

the lead-time is higher than a threshold. Note that this corresponds to a state-dependent

base-stock policy in traditional inventory management models.

Notice that the result can be easily extended to continuous time, where information

updates over Tk flow continuously. It is interesting to note that, in Theorem 2, the optimal

policy comes from comparing a term that depends on the cost and price processes with a

term that depends on the demand process.

The assumptions on the price and cost processes required in the theorems are satisfied

for many simple situations. Of course, they are true when Ct and Pt are deterministic and

stationary. In that case, both theorems provide the same order condition:

b + (1− α)C

b + h + αL(1− α)P
≤ Pt(Tk ≤ t + L).

One can also consider the case where Pt = p and Ct is stochastic such that Ct+1 = Ct(1− εt)

where the cost decreases by εt ≥ 0, and has a stationary average EItεt = µ. Other instances
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include, in the case of r(Parriv, Pdeliv) = Pdeliv, situations where the price process is equal to

the cost process plus a fixed mark-up, i.e., Pt = Ct + m, and Ct+1 = Ct(1 − εt), defined as

before.

When the conditions of the theorem are not satisfied, the myopic policy may not be

optimal, and one should resort to a numerical method to solve the dynamic program, i.e.,

Equation (4). We show next two examples where the myopic policy is not optimal, in the

case of prices being the determined at delivery. In each case, one of the two assumptions is

not satisfied.

Example 2 Heavy-tailed inter-arrival times. Assume that price and cost are station-

ary, equal to p and c respectively, that h = b = 0 and that r(Parriv, Pdeliv) = Pdeliv. Thus,

the left-hand side of (7) is constant. Consider k = 1 and that the arrival time of the (first)

customer is t ≥ 1 with probability
1

t
− 1

t + 1
=

1

t(t + 1)
, that is, heavy-tailed distributed and

hence, not satisfying Assumption 1.

We can show (details in the appendix) that the myopic policy is not optimal. Indeed,

with this type of demand when the customer arrives late, it tends to arrive very late. The

myopic policy underestimates the value of the information update and thus, suggests to place

the order earlier than it should.

An numerical illustration is provided in Figure 1 (left). In the figure, the myopic pol-

icy dictates that one should place the order for t ≤ 3, that is when U(t, not arrived) ≥
E

It=not arrivedU(t + 1). However, since V (t, not arrived) > U(t, not arrived) for all t, it is

never optimal to place an order when the customer has not arrived.

As a consequence, the results of Theorem 2 cannot hold when we remove Assumption 1.

Example 3 Increasing costs. Assume that the arrival time of the first customer is expo-

nential, i.e., the probability of arrival on t+1 given that it has not arrived at t is 1−β ∈ (0, 1).

Consider now a stationary price p but a cost Ct = pαL (1− θt) that increases over time. Let

h = b = 0. Thus, the discounted margin p − αLCt decreases by a factor θ < 1 per period.

Also, Ct − αEItCt+1 increases. Assumption 1 is satisfied, but the left-hand side of (7) is

increasing.

We show (details in the appendix) that the myopic policy is not optimal. The intuition is

that sometimes, it may happen 0 ≥ U(t, not arrived) ≥ E
It=not arrivedU(t+1). The myopic

policy may suggest to place an order even though it is not profitable to do so on expectation,

because it focuses on the potential margin loss of delaying the sale, and neglects the value of
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acting only when the customer has arrived. Thus, it underestimates the value of delaying the

ordering decision.

A numerical example is provided in Figure 1 (right). The figure indicates that it is optimal

to place an order for t ≤ 7, while the myopic policy yields placing the order for t ≤ 24. Hence,

the results of Theorem 2 do not necessarily hold when we remove that the left-hand side of

(7) is non-increasing.
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Figure 1: Plot of V (t, not arrived), U(t, not arrived), and E(It=not arrived)U(t+1) for Examples
2 (left) and 3 (right). On the left figure, the parameters are L = 5, p = 1, c = 0.5, h = b = 0
and α = 0.95. On the right figure, L = 20, p = 1, h = b = 0, α = 0.99, β = 0.99 and θ = 0.9.

4. Conclusion

The model presented in this paper uses the single-unit decomposition framework to derive

optimality of myopic policies under certain conditions. These conditions, specifically those on

the demand process, are weaker than having stochastically increasing demands across time.

Our approach yields a closed-form order policy, what we call a base-probability policy. This

policy dictates that the order of customer k should be placed at t if and only if the customer

arrival probability within the lead-time is higher than a certain threshold determined by the

cost and price processes.

The methodology applied in the paper can be extended directly to batch ordering. Other

more general situations, such as the stochastic lead-time case with non-crossing orders, can

also be approached with the same method but the resulting ordering rules are not as simple

in this case.
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Proof of Lemma 1

Proof. If U(t, k, It)−EItU(k, t + 1, It+1) ≥ 0 is non-decreasing for all sample paths, then if

U(t, k, It) − EItU(k, t + 1, It+1) ≥ 0, then the same is true for t + 1, i.e., U(t + 1, k, It+1) −
EIt+1U(k, t + 2, It+2) ≥ 0, and so on. A value iteration argument yields that V (k, t, It) =

U(k, t, It). On the other hand, if U(t, k, It) − EItU(k, t + 1, It+1) < 0, then V (k, t, It) ≥
EItU(k, t + 1, It+1) > U(t, k, It).

Proof of Theorems 1 and 2

Proof. We can calculate

U(k, t, It)− EItU(k, t + 1, It+1)

= αt

( −b + (h + b)PIt(Tk ≤ t + L)− Ct + αEItCt+1

+αLEIt

{
1t+L≥Tk

(
r(PTk

, Pt+L)− αr(PTk
, Pt+L+1)

)}
)

When the price is paid when the order is made, then

U(k, t, It)− EItU(k, t + 1, It+1)

= αt

( −b− Ct + αEItCt+1

+
[
αL(1− α)EIt {PTk

|Tk ≤ t + L}+ (h + b)
]
PIt(Tk ≤ t + L)

)

and when it is paid when the order is delivered, then

U(k, t, It)− EItU(k, t + 1, It+1)

= αt

( −b− Ct + αEItCt+1

+
[
αLEIt {Pt+L − αPt+L+1|Tk ≤ t + L}+ (h + b)

]
PIt(Tk ≤ t + L)

)

We simply apply the assumptions to show that if Equations (6) and (7) are satisfied at

t, they are also satisfied at t + 1, for each sample path. Lemma 1 yields the theorems.

Details of Example 2

If the customer has still not arrived yet at time t, the conditional probability that the

customer arrives at t + ∆t ≥ t + 1 is γt,t+∆t =
t + 1

(t + ∆t)(t + ∆t + 1)
. Hence,

U(t, arrived) = αt(pαL − c)

U(t, not arrived) = αt

{
p

(
L

t + L + 1
αL +

∞∑

k=L+1

t + 1

(t + k)(t + k + 1)
αk

)
− c

}
< U(t, arrived)
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Thus,

E
It=not arrivedU(t + 1) = αt

{
p

(
L + 1

t + L + 2
αL+1 +

∞∑

k=L+2

t + 1

(t + k)(t + k + 1)
αk

)
− cα

}

Hence, U(t, not arrived) ≥ E
It=not arrivedU(t + 1) if and only if

L + α(L + 2)

t + L + 1
− α(L + 1) + α(L + 2)

t + L + 2
≥ (1− α)c

αLp
.

If L ≤ α(L+1), the left-hand side is decreasing. Otherwise, the left-hand side can be shown

to be decreasing and then increasing to zero. Thus, in the general case, the condition is

satisfied for t ≤ t1, where t1 is the unique equation to

L + α(L + 2)

t1 + L + 1
− α(L + 1) + α(L + 2)

t1 + L + 2
=

(1− α)c

αLp
= r.

That is,

t1 =
1

2

√(
α(L + 1)− L

r

)2

+ 4
L + α(L + 2)− r

r
− 1

2

α(L + 1)− L

r
.

Thus, the condition can only be satisfied when r =
(1− α)c

αLp
≤ L + α(L + 2).

For large t, U(t, not arrived) ≤ 0, and therefore it is optimal to produce only upon arrival.

Thus, there is t2 such that for t ≥ t2, we can show that

V (t, arrived) = αt(pαL − c)

V (t, not arrived) = αt

{ ∞∑

k=1

t + 1

(t + k)(t + k + 1)
αk(pαL − c)

}
.

At t = t2−1 we have that U(t, not arrived) ≥ E
It=not arrivedU(t+1), which is equivalent

to

p

(
L

t + L + 1
αL +

∞∑

k=L+1

t + 1

(t + k)(t + k + 1)
αk

)
− c

≥
∞∑

k=1

t + 1

(t + k)(t + k + 1)
αk(pαL − c),

This is equivalent to

∞∑

k=L+1

t + 1

(t + k)(t + k + 1)
(αL − αk)

≤
(

L

t + L + 1
−

L∑

k=1

t + 1

(t + k)(t + k + 1)
αk

) (
αL − c

p

)
.

The conclusion is straightforward: the myopic policy cannot be optimal.
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Details of Example 3

U(t, arrived) = αt(pαL − Ct) = pαLαtθt

U(t, not arrived) = αt

{
p

(
αL(1− βL) +

αL+1βL(1− β)

1− αβ

)
− pαL

(
1− θt

)}

= pαLαt

(
θt − βL 1− α

1− αβ

)

< U(t, arrived)

E
It=not arrivedU(t + 1) = pαLαt+1

(
θt+1 − βL+1 1− α

1− αβ

)

.

Hence, U(t, not arrived) ≥ E
It=not arrivedU(t + 1) if and only if θt ≥ βL(1− α)

1− αθ
, that is,

t ≤ t1 for t1 defined appropriately.

In addition, as in the previous example, for large t it is not profitable to place the order

before the customer has arrived, since the expected profit from doing so is negative. This

implies that for t large enough,

V (t, not arrived) =
∞∑

k=1

αt+k(1− β)βk−1pαLθt+k

= pαLαtθt

(
(1− β)αθ

1− αβθ

) .

Hence, at the last period t where the order is launched before arrival, we have that

θt − βL 1− α

1− αβ
≥ θt

(
(1− β)αθ

1− αβθ

)
,

or equivalently,

θt

(
1− αθ

1− αβθ

)
≥ βL(1− α)

1− αβ
.

Hence, the myopic policy cannot be optimal.
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