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We analyze the price competition between two suppliers offering two different lead times and two different
prices to a buyer. The buyer chooses its inventory replenishment policy in order to minimize its infinite-
horizon average cost. In essence, the fast and expensive supplier is used only in emergencies, while the
slow and cheap supplier receives the bulk of the orders. Thus, despite a higher price, the fast supplier is
able to capture a part of the buyer’s orders. We analyze the price competition between the asymmetric
suppliers, where the market share of each supplier is derived from the buyer’s inventory problem. We find
equilibria that differ significantly from the Bertrand price-only competition. In particular, for some cost
parameters, the fast supplier is able to charge a premium for faster delivery, and stay in business even
with a higher production cost. We obtain in some cases closed-form formulas for the price difference in
equilibrium. Hence, our results show that high cost suppliers may not be driven out of business if they can
offer fast delivery.

1 Introduction

Globalization of the economy has had tremendous consequences for many companies around the world.

The major effects have been observed in manufacturing, e.g., textiles or electronics, where a large volume

of production has moved from high cost countries, such as the United States, Germany or France, to low

cost regions, such as China, Vietnam, or Eastern European countries.

Of course, for companies based in higher cost areas such as Western Europe or the United States, facing

new competition from low cost countries has been a challenge difficult to overcome. As a result, many of

these firms have moved their own facilities to low cost countries as it seemed the only way of remaining

competitive.

However, by moving to low cost countries, these companies have also given up an important competitive

attribute: typically, they have moved from locations close to the final market, to far-away countries, which

are weeks away from the customers. Implicitly, these companies have assumed that the lead time advantage

was not as valuable as the cost advantage.
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These actions seem to imply that in the new competitive landscape, cost is the only important attribute

to consider. The economics literature has developed some game-theoretic price competition models that

support this view of the world. Most relevant is the Bertrand price competition framework, see Tirole [17]

or Vives [19] for references. In this setting, two firms compete in price for a market demand. When the two

firms have identical costs, the only equilibrium is that both firms price at marginal cost, share the total

demand, and thus make zero profits. This is the so-called Bertrand paradox. A more realistic use of this

model is to examine the asymmetric case, when one firm has lower costs than the other. Here, the most

competitive supplier captures the market, at an equilibrium price equal to the cost of the less competitive

supplier. This is what seems to be observed in the offshoring trend. These models can be extended to

take lead time into account, by adding a cost penalty to the slow supplier. However, by doing this, the

equilibrium result is similar to the Bertrand outcome: one supplier captures all the market and drives the

least competitive suppliers out of business.

In some industries, however, we can observe suppliers located in high cost countries coexisting with

low-cost competitors. In these situations, the lead time advantage must certainly be considered, as it

allows companies to serve the market better. For instance, fast-retailing companies such as Zara have

demonstrated that sourcing close to the market can provide a crucial competitive advantage. Zara can

achieve very fast response to market trends by using suppliers in Spain, Portugal and Northern Africa.

Zara’s suppliers are probably more expensive than competitors located in Asia, but their short lead time

makes them Zara’s first choice.

Other companies, such as the German retailer Adidas, also take advantage of lead time in their supply.

Adidas may work with two suppliers: one in China and another one in Germany. Having two suppliers

helps Adidas react to demand variability better (with the reactivity of the German supplier) and obtain

good prices (by giving volume to the Chinese supplier). This example shows that the German supplier,

Trigema [9], can be competitive offering fast service and high price.

Obviously, such a situation cannot be explained with a Bertrand-like competition model, where the

winner takes all. Indeed, Adidas’ case shows that it is possible to obtain the benefits of both low cost and

high flexibility by using multiple sourcing. Concentrating supply in a single source limits the production

flexibility that the buyer can obtain: by using a unique supplier, the buyer commits to a single production

technology, which is typically cheap but rigid, or expensive and flexible. To alleviate this effect, many

companies resort to dual sourcing. Like Adidas, the buyer can then use the fast and expensive supplier

in emergencies, while the slow and cheap supplier receives the bulk of the orders. Under this buyer’s
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behavior, it is clear that, despite a higher price, the fast supplier is able to capture a part of the buyer’s

orders. Faster lead time hence provides an opportunity for high cost suppliers to be competitive and stay

in business.

The purpose of this paper is thus to provide a model of supplier competition where this lead time

advantage is properly taken into account. This requires using a dual sourcing inventory management

model. We analyze explicitly the buyer’s inventory management policy to characterize the market share

that the fast supplier can capture, despite a higher price. We then turn to analyzing the duopoly pricing

game between fast and slow suppliers. We ask the following questions. First, can the fast supplier achieve

a positive share of the market even though it has higher cost? Second, in equilibrium, what is the price

premium, if any, that it can charge, compared to the slow supplier?

Our model consists of an infinite-horizon periodic-review inventory replenishment problem. The buyer

faces a stochastic i.i.d. demand at each period, and can replenish its inventory by placing orders with two

suppliers, each offering a different lead time and a different price to the buyer. We assume that there is

no fixed cost associated with ordering from any of the two suppliers. The buyer minimizes its long-run

average cost by placing appropriate orders with each supplier. This minimization results in a splitting of

the market between the suppliers.

Knowing this splitting, each supplier chooses a static price for the component that maximizes its long-

term average profit, given its cost and its lead time quotation. We analyze the pure-strategy equilibrium

pricing strategies of the suppliers.

Of course, we could give the suppliers the freedom to adjust prices as a function of the buyer’s current

stocking position. In a situation of potential shortage, the fast supplier, being the only supplier that can

save the buyer from a stock-out, would raise the price of the component and use its temporarily increased

negotiation power. Studying this behavior would require a complex model that monitors the quality of

buyer-supplier relationships. Instead, we choose to study a static price game, where it is assumed that

suppliers do not take advantage of the buyer’s situation. In practice, this may correspond to long-term

price agreements between suppliers and buyer. Within this framework, our model is able to capture the

intrinsic advantages of a fast-response supplier.

We find that for some cost parameters, the asymmetric Bertrand equilibrium remains the only equilib-

rium of our game. However, we also characterize situations where the fast supplier captures a positive share

of the market. Our model thus identifies competitive equilibria that are very different in nature to the ones

identified by traditional price-only competition. Finally, we find that in some cases, no equilibrium exists.
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In any case, we observe that the demand distribution has a direct impact in the nature of competition.

The paper is organized as follows. In Section 2, we review the existing literature. We present the

model in Section 3. We first analyze the buyer’s inventory problem in Section 4. Section 5 presents

general equilibrium results for general market splitting functions. These are applied to two cases. First,

in Section 6, we analyze the duopoly competition when the lead time difference is equal to the review

period, and obtain closed form results when the lead times are 0 and 1. Second, in Section 7, we develop

an approximated market splitting function and characterize the different equilibrium cases. Finally, in

Section 8, we summarize our results and discuss possible extensions of the model.

2 Literature Review

Our model considers competition between suppliers in a context of inventory management, where price

together with lead time is taken into account.

A first stream of literature related to this work considers sourcing with multiple suppliers taking into

account price and another attribute, such as quality, yields or credit risk. Minner [12] reviews several

motivations for supplier diversification. The objective is to understand how this additional attribute

affects the buyer’s profit or utility function. These models typically derive appropriate operating policies,

by identifying the ordering policies that the buyer should use with each supplier. Specifically, when this

is applied to the case of dual sourcing, the key question for the buyer is how to split orders between the

suppliers.

One of the main attributes that has been considered in the literature is supplier yield. That is, when

suppliers are not fully reliable and deliver only a fraction of their orders, then supplier diversification can

be beneficial in order to reduce yield uncertainty. This approach is motivated by quality problems or

response-time uncertainties. Gerchak and Parlar [8], Anupindi and Akella [2], and Parlar and Wang [15]

discuss the optimal diversification policy for the buyer, i.e., its optimal replenishment strategy. In a similar

line, when there is a chance that a supplier goes out of business, using dual sourcing reduces the risk of a

supply disruption, see Tomlin [18], Federgruen and Yang [5] and Babich et al. [3].

Closest to this paper is a set of papers that consider lead time and price attributes, see Allon and

Federgruen [1] and references therein. These papers use queuing theory to model lead time. Our paper

follows an approach similar to the papers presented above, with the difference that we specify lead time

explicitly (and not as the outcome of server congestion). This is more realistic for situations where lead

time is related to transportation. There, capacity is seldom restrictive and uncertainty in transportation
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time is minimal. The focus is also different. We start by determining the buyer’s behavior when facing two

competing suppliers with different price and lead time combinations, and use it to analyze the competitive

interaction between the suppliers through price.

In addition to the papers cited above, we make use of the literature of inventory management with

multiple procurement modes. It is well-known, from Fukuda [7], that when the lead time difference between

the suppliers is equal to 1, then a double base-stock policy is optimal for the buyer. However, when the

lead time difference is greater than 1, the optimal replenishment policies do not exhibit the base-stock

property anymore, see Feng et al. [6] and Whittemore and Saunders [20]. In this paper, we assume that

the buyer uses a double base-stock policy, that, despite being sub-optimal, is commonly used in double

sourcing practices. Intuitively, by using a static base-stock policy, the bulk of the procurement comes

from the distant and cheap supplier, and only when the inventory level is dangerously low (i.e., below the

corresponding base-stock target), the fast and expensive supplier is called in. A similar heuristic approach

has been extensively used in the literature: impose a given simple policy, and find the corresponding optimal

or near-optimal parameters, see for instance Moinzadeh and Nahmias [13], Moinzadeh and Schmidt [14] or

Tagaras and Vlachos [16].

Finally, our work is related to pricing too. In a single period monopoly setting, the optimal pricing policy

has been studied in Lariviere and Porteus [10], where a supplier is selling to a newsvendor. Introducing

competition complicates the nature of the analysis, and uses more intensively game theory. Our work is

thus related to the huge body of research in economics concerned with oligopoly pricing, and in particular

duopoly pricing. The book by Vives [19] reviews most models in that area, from Bertrand to Cournot

competition. This paper falls within the category of price-competition models with asymmetric firms. In

the economics literature, the Bertrand model with asymmetric costs is the closest work to our model. The

main difference is that in our case, the demand is split between the two suppliers that charge different

prices. In contrast, in the Bertrand model, when a firm charges a higher price than its competitor, then

its market share is zero.

3 The General Model

Consider a buyer that needs to purchase a component for the final product, in a infinite-horizon periodic-

review environment. Demand for the component is stochastic. Customers arriving at time t = 1, . . . ,∞ are

served from stock, or, if on-hand inventory is not sufficient, unserved items are back-ordered. We denote

by Dt the demand from period t, and we assume that demands are independent identically distributed and
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within the support [Dmin, Dmax] ⊂ [0,∞). Let F (q) = P(Dt ≥ q) and D the average demand. We assume

that F is twice differentiable, and F
′ = −f . We denote, for k ≥ 1, F k(q) = P(Dt + . . . + Dt+k−1 ≥ q) and

F
′
k = −fk.

The component may be obtained from two different suppliers, a local supplier, 1, and an offshore

supplier, 2. Of course, these two suppliers differ not only by the prices they charge, but also by their lead

times. We assume, without loss of generality, that the local supplier has a lead time L1 ≥ 0 while the

offshore supplier needs a time L2 > L1 to serve the buyer. That is, when an order is placed at supplier i

at the end of period t (after demand at t is realized), it is received at the beginning of period t + Li + 1

(before the demand at t + Li + 1 is realized).

We denote by p1, p2 the price that these two suppliers charge for one unit of component. Of course,

if p1 ≤ p2, it is clear that the buyer should always source from the cheaper and faster supplier. However,

when p1 > p2, the optimal policy can be to source from both suppliers.

The sequence of events is the following. First, the suppliers set long-run static prices p1 and p2. Then,

the buyer determines its optimal long-run replenishment policy. We are ultimately interested in the price

competition between suppliers, and for this purpose, we analyze the buyer’s behavior first.

4 The Buyer’s Inventory Problem

The buyer’s objective is to serve demand at minimum long-run average cost. Three factors contribute to

cost:

• the cost of items purchased at supplier 1;

• the cost of items purchased at supplier 2; and

• the inventory holding and back-ordering cost.

We model the holding and back-ordering cost as a piecewise linear function h(·). Specifically, h(q) =

hinv · q, when q ≥ 0, where hinv ≥ 0 is the per-unit holding cost; and h(q) = −hbo · q, when q ≤ 0, where

hbo ≥ 0 is the per-unit back-ordering cost. This choice of cost function is standard in inventory models. As

a matter of fact, the analysis could be performed for a more general function h(·), that should be convex.

The supply flow in the chain is modeled as follows. For each time period t, we define the inventory

position j, Y j
t , as the total of the inventory on-hand plus all the standing orders due before t + j. These
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include all the orders placed before t, but not yet received. Thus, Y 0
t represents the inventory on-hand

(negative is there is backlogged demand), Y 1
t the sum of Y 0

t plus the arrivals of the next day, and so on.

Hence, as shown in Figure 1, the inventory state at the beginning of time t is

(
Y 0

t , . . . , Y L1−1
t , Y L1

t , . . . , Y L2−1
t , Y L2

t

)
;

at this point, demand Dt arrives into the system, and the state moves into

(
Y 0

t −Dt, . . . , Y
L1−1
t −Dt, Y

L1
t −Dt, . . . , Y

L2−1
t −Dt, Y

L2
t −Dt

)
;

finally, replenishment orders are sent and time advances from t to t + 1, with state
(
Y 0

t+1, . . . , Y
L1−1
t+1 , Y L1

t+1, . . . , Y
L2−1
t+1 , Y L2

t+1

)

=
(

Y 1
t −Dt, . . . , Y

L1
t −Dt, Y

L1+1
t + Q1

t −Dt, . . . ,

Y L2
t + Q1

t −Dt, Y
L2
t + Q1

t + Q2
t −Dt

)
,

where Q1
t and Q2

t are the ordering quantities placed in t at suppliers 1 and 2 respectively. We see that when

supplier 1 has lead time L1 = 0, this corresponds to replenishment orders that are fulfilled immediately,

i.e., before the next demand arrives.

Given the prices p1 and p2, let (q1(Yt), q2(Yt)) be a Markov replenishment policy, among which we find

the optimal one. The average cost of the buyer using that policy can be written as

C(q1, q2) = p1E[q1(Y )] + p2E[q2(Y )] + Eh(Y 0)
= (p1 − p2)E[q1(Y )] + p2

(
E[q1(Y )] + E[q2(Y )]

)
+ E[h(Y 0)],

where Y is the steady-state distribution of Yt using the policy (q1, q2). Any policy that yields a finite

average cost should satisfy E[q1(Y )] + E[q2(Y )] = D, for stability. Thus, any candidate for the optimal

policy, we must have

C(q1, q2) = (p1 − p2)E[q1(Y )] + p2D + E[h(Y 0)]. (1)

This implies a very important property: the optimal policy will depend only on

∆ := p1 − p2, (2)

the price difference, and not on the prices taken separately.

Let

α1(∆) =
Q1(∆)

D
, (3)

the fraction of orders going to supplier 1, i.e., its average market share, under the buyer’s optimal replen-

ishment policy. The fraction of orders going to supplier 2 is simply α2(∆) = 1− α1(∆).
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Figure 1: Summary of the inventory position at times t (left) and t + 1 (right).
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One direct property is that when ∆ = 0, the buyer should source only from the fast supplier, i.e.,

α1(0) = 1. In addition, when ∆ ≥ (L2 − L1)hbo, the buyer is better off buying from the slow supplier and

stocking out, rather than buying from the fast supplier. Thus it should source only from the slow supplier,

i.e., α1((L2 − L1)hbo) = 0. In addition, it is clear that α1 is non-increasing.

Figure 2 shows an example of the shape of the market share function α1, an output of the buyer’s

inventory problem. We consider a normal demand distribution with mean 1 and standard deviation of 0.3,

inventory and back-ordering cost hinv = 1 and hbo = 9 respectively, and lead times L1 = 2 and L2 = 3.

Notice that when ∆ → 0, the market share of the fast supplier goes to 100%, i.e., α1 → 1.
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Figure 2: Shape of α1(∆) as a function of ∆, for L1 = 2 and L2 = 3.

Notice that for any combination (L1, L2), α1(∆) can only be characterized by solving the buyer’s

minimization problem. The optimal inventory policy in the general case is known to have a complex

structure, see Whittemore and Saunders [20]. However, when L2 = L1 + 1, Fukuda [7] first showed that

using a double base-stock replenishment policy was optimal. Not only the class of double base-stock policies

is optimal when L2 = L1 + 1, but also, when L2 > L1 + 1, its performance is close to the optimum, as

shown in Tagaras and Vlachos [16]. Moreover, its simplicity makes it an attractive candidate for companies

to implement.
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The characterization of α1 using double base-stock policies is the focus of Sections 6 and 7. However,

before analyzing this in detail, we define the duopoly price competition and obtain some results that depend

on the structure of α1. For this purpose, we focus on the suppliers’ strategies.

5 Duopoly Prices in Equilibrium

We assume that the suppliers incur a cost c1, c2 respectively per unit of component shipped to the buyer.

Of course, in order to earn profits, the suppliers declare a price that is higher than their true cost. We

compute the profits of each one of the suppliers (we scale it down by the average demand). Supplier 1’s

profit is hence

Π1(p1, p2) = (p1 − c1)α1,

while supplier 2’s profit can be expressed as

Π2(p1, p2) = (p2 − c2)(1− α1).

We study the Nash equilibria of the game in pure strategies. Our model resembles the classical Bertrand

price-competition model. In Bertrand’s setting, the function α1 is such that:

α1(∆) =





1 when ∆ < 0
1
2

when ∆ = 0

0 when ∆ > 0.

With this demand splitting scheme, equilibrium exists, and is unique such that p1 = c1, p2 = c1 − ε > c2

(an ε-equilibrium).

In our model, on the other hand, α1 is the outcome of the buyer’s optimization problem, given the

price difference ∆ = p1 − p2. It can be observed that α1(0) = 1 and decreases to zero with ∆. The central

question here is to determine whether equilibrium exists, and if so, whether it is unique. Of course, the

answer to this question depends crucially on the shape of the function α1.

Lemma 1 If (p1, p2) is a Nash equilibrium of the pricing game with p1 > p2, then it is necessary that

−dα1

d∆
=

α1

p1 − c1
=

α2

p2 − c2
, (4)

together with

2
(

dα1

d∆

)2

≥ α1
d2α1

d∆2
and 2

(
dα1

d∆

)2

≥ −(1− α1)
d2α1

d∆2
. (5)
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This is simply a reformulation of the first and second-order conditions. Notice, however, that, unless

we show concavity of the profit function of each supplier, the second-order conditions do not guarantee

that the selected price is a global maximizer of profit. Thus, we need to conduct a more thorough analysis

of the profit functions. For this purpose, we identify properties of α1 that yield equilibrium results.

Lemma 2 If α1 is convex in (0, (L2 − L1)hbo), then the profit function Π2 is pseudo-concave in p2 ∈
(p1 − (L2 − L1)hbo, p1).

All the proofs are contained in the appendix.

Lemma 2 shows that the profit of the slow supplier, 2, is well-behaved when α1 is convex. It turns

out that this property is satisfied by most usual distributions, see Lemma 7 in the next section. With this

property, we can characterize the best-response price p2 to a price p1.

Lemma 3 When α1 is convex in (0, (L2 − L1)hbo), then the best-response p∗2(p1) has the following char-

acteristics: there are 0 ≤ a2 ≤ e2 such that

• when p1 ≤ c2, then p∗2(p1) = c2;

• when c2 < p1 ≤ c2 + a2, p∗2(p1) = p1 − ε with ε positive very small;

• when c2 +a2 < p1 ≤ c2 + e2, p∗2 is continuous and non-decreasing in p1, but with a slope smaller than

1;

• when c2 + e2 < p1, p∗2(p1) = p1 − (L2 − L1)hbo.

Thus, p∗2 is non-decreasing, continuous everywhere, with slope between 0 and 1, except at p1 = c2 + e2,

where it jumps up.

We can see that there are four main cases for the slow supplier: either exit the market by pricing higher

than the fast supplier; or settle for the deterministic part of demand only, i.e., α2(0+), which may or may

not be zero, by pricing marginally below the fast supplier; or undercut the fast supplier to capture market

share; or push the fast supplier out of the market by setting a much smaller price p1 − (L2 − L1)hbo. The

four cases are illustrated in Figure 3 (left).

We can perform a similar analysis for the fast supplier. Here the critical property is having
1
α1

convex.
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Lemma 4 If
1
α1

is convex in (0, (L2 − L1)hbo), then the profit function Π1 is pseudo-concave in p1 ∈
(p2, p2 + (L2 − L1)hbo).

Lemma 5 When
1
α1

is convex in (0, (L2 − L1)hbo), then the best-response p∗1(p2) has the following char-

acteristics: there are −(L2 − L1)hbo ≤ a1 ≤ e1 such that

• when p2 ≤ c1 − (L2 − L1)hbo, then p∗1(p2) = c1;

• when c1 − (L2 − L1)hbo < p2 ≤ c1 + a1, p∗1(p2) = p2 + (L2 − L1)hbo − ε with ε positive very small;

• when c1 + a1 < p2 ≤ c1 + e1, p∗1 is continuous in p2, with a slope smaller than 1 (may be decreasing);

• when c1 + e1 < p2, p∗1(p2) = p2.

Thus, p∗1 is continuous everywhere except at p2 = c1 + e1 possibly, where it jumps down. When α1 is

continuous at ∆ = 0, then p∗1 is continuous everywhere.

Similarly as with Lemma 3, we obtain four cases. These are illustrated in Figure 3(right).
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Figure 3: Shape of the best-response functions p∗2(p1) (left) and p∗1(p2) (right). Notice that the intermediate
part, where p∗i = p0

i continuous, is here increasing, but it is not necessarily so for p∗1 as we see in Section 6.

However, it turns out that in some regular cases (see next section), the function
1
α1

is not convex, but

concave. For that case, we have the following result

Lemma 6 When
1
α1

is concave in (0, (L2 −L1)hbo), then the best-response p∗1(p2) has the following char-

acteristics: there are −(L2 − L1)hbo ≤ e1 such that
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• when p2 ≤ c1 − (L2 − L1)hbo, then p∗1(p2) = c1;

• when c1 − (L2 − L1)hbo < p2 ≤ c1 + e1, p∗1(p2) = p2 + (L2 − L1)hbo − ε with ε positive very small;

• when c1 + e1 < p2, p∗1(p2) = p2.

Thus, p∗1 is continuous everywhere except at p2 = c1 + e1, where it jumps down.

We observe that the structure of the best-response function is identical to the one identified in Lemma

5, with a1 = e1. In addition, here there is a discontinuity even when α1 is continuous.

Given the best-response functions, we are able to characterize the equilibrium of the pricing game.

Theorem 1 When α1 is convex and
1
α1

is convex or concave in (0, (L2 − L1)hbo), there exists a Nash

equilibrium (peq
1 , peq

2 ) of the pricing game if and only if one of the following situations is satisfied:

1. c1 − c2 ≤ −e1, i.e., the slow supplier is so expensive that the fast supplier’s best option is to price it

out of the market, i.e., peq
1 = peq

2 = c2.

2. e2 ≤ c1 − c2, i.e., the fast supplier is so expensive that the slow supplier’s best option is to price it

out of the market, i.e., peq
1 = c1 and peq

2 = c1 − (L2 − L1)hbo.

3. lim
ε→0+

p∗1(c1 + e1− ε)− (c1 + e1) ≤ (c2 + e2)− lim
ε→0+

p∗2(c2 + e2− ε), i.e., the fast and slow suppliers can

coexist and offer differentiated prices.

In any of these cases, the equilibrium is unique.

Thus, the theorem completely characterizes the types of equilibrium of the game. In any other situation,

there is no equilibrium. There are three possible cases. In the first two cases, c1−c2 ≤ −e1, or c1−c2 ≥ e2.

These are situations where the cost differential of a supplier is too large to be competitive. The third case

corresponds to an equilibrium with a stable price premium of the fast supplier over the slow supplier. The

technical condition guarantees that the equilibrium is indeed reached.

Interestingly, when
1
α1

is concave, we have that lim
ε→0+

p∗1(c1 + e1 − ε) − (c1 + e1) = (L2 − L1)hbo >

(c2 + e2)− lim
ε→0+

p∗2(c2 + e2 − ε), and thus the last case can never occur.

On the other hand, when
1
α1

is convex, α1 is continuous at ∆ = 0, and hbo →∞, the last case occurs

for some c1, c2. Indeed, in that case, the best-response functions are continuous, e2 →∞, lim
ε→0+

(c2 + e2)−
p∗2(c2 + e2 − ε) → +∞, while lim

ε→0+
p∗1(c1 + e1 − ε)− (c1 + e1) is finite.

13



Hence, we have identified two types of stable outcomes: either one supplier clearly dominates the other

and captures the entire market; or both suppliers can coexist in competition, price differently and capture

a portion of the market. Finally, it is also possible that no equilibrium exists. Being in one situation or

another depends (1) on the cost parameters of the suppliers and the inventory costs hbo, hinv; and (2) on

the demand distribution.

6 Exact Characterization when L2 = L1 + 1

In this section, we characterize α1 exactly for L2 = L1 + 1. This will allow us to apply Theorem 1 and, in

some cases, solve in closed form the price competition game between suppliers.

For this purpose, we must solve the buyer’s problem, i.e., minimize the buyer’s cost under all inventory

policies. This is typically difficult. It involves describing the steady-state distribution of orders and

inventory positions. Fortunately, when L2 = L1 + 1, Fukuda [7] first showed that the structure of the

optimal policy is tractable.

At optimality, the buyer uses two target levels b1 and b2 to order in the following way. At the beginning

of period t, demand Dt arrives. Then, if the inventory position at supplier 1, i.e., Y L1+1
t −Dt, falls below

b1, the manufacturer orders Q1
t = b1 −

(
Y L1+1

t − Dt

)
from supplier 1. Otherwise, no order is placed at

supplier 1. Next, it considers the inventory position at L2, which at this point is equal to Y L2
t −Dt + Q1

t .

If it is below b2, it orders Q2
t = b2 −

(
Y L2

t − Dt + Q1
t

)
from supplier 2; otherwise, no order is placed at

supplier 2.

6.1 Optimal Base-Stock Levels

The optimal policy is characterized by two base-stock levels, b1, b2, each for one supplier. Under a double

base-stock policy, we have

Q1
t =

(
b1 − (Y L1+1

t −Dt)
)+

and Q2
t =

(
b2 − (Y L2

t + Q1
t −Dt)

)+
.

This implies that Q1
t + Q2

t = Dt always and thus Y L2
t ≡ b2. Thus, since for L1 ≤ j ≤ L2 − 1,

Y j
t = Y j+1

t−1 −Dt−1 + Q1
t−1, we establish that Y j

t = b2 +
L2−j∑

i=1

(−Dt−i + Q1
t−i

)
. Hence,

Y L1
t = b2 −

L2−L1∑

i=1

Dt−i +
L2−L1∑

i=1

Q1
t−i.

14



In general, we do not obtain a closed-form expression for the inventory position at supplier 1, i.e. Y L1
t .

Fortunately, this can be done when L2 = L1 +1. Interestingly, tractability of the problem coincides exactly

with optimality of base-stock policies for two procurement modes, see Feng et al. [6]. When the two suppli-

ers have consecutive lead times, we have that Q1
t = max

{
0, b1 − (Y L2

t −Dt)
}

= max {0, Dt − (b2 − b1)} .

Thus, Y L1
t = max{b2−Dt−1, b1}. From these two expressions, we can determine the long-run average cost

for the buyer as a function of b1 and b2, from Equation (1). It is easy to see that if both suppliers are used,

i.e., b1 < b2, then

Q1 =
∫ ∞

b2−b1

F (q)dq and Q2 =
∫ b2−b1

0
F (q)dq.

Also, with a recursion similar as the one above, we have that Y 0
t = Y L1

t−L1
−

L1∑

i=1

Dt−i. Y0 is thus simply Y L1

minus the sum of L1 demand realizations, where the stationary distribution of Y L1 is known. Indeed, by

construction, Y L1 = max{b2 −D, b1} and hence

P(Y L1 = b1) = F (b2 − b1), and
P(Y L1 ≤ q) = F (b2 − q), for q ≥ b1.

By convoluting this distribution with the total demand during L1 periods, we can compute Eh(Y 0) as a

function of b1, b2. When L1 > 0,

Eh(Y 0) = hinv

(
F (b2 − b1)

∫ b1

u=0
(b1 − u)fL1(u)du +

∫ b2−b1

v=0

∫ b2−v

u=0
(b2 − v − u)f(v)fL1(u)dudv

)

+ hbo

(
F (b2 − b1)

∫ ∞

u=b1

(u− b1)fL1(u)du +
∫ b2−b1

v=0

∫ ∞

u=b2−v
(u + v − b2)f(v)fL1(u)dudv

)

To select the optimal base-stock policy, we set
dC

db1
=

dC

db2
= 0. The first condition yields

dC

db1
= ∆F (b2 − b1) + hinvF (b2 − b1)

(
1− FL1(b1)

)− hboF (b2 − b1)FL1(b1) = 0

or equivalently,

FL1(b1) =
hinv + ∆
hinv + hbo

. (6)

Notice that this implies that, when ∆ ≥ hbo, it is best not to order anything with the fast supplier, i.e.,

b1 = −∞, as we already knew. The second condition is
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dC

db2
= −∆F (b2 − b1) + hinv

∫ b2−b1

v=0
f(v)

(
1− FL1(b2 − v)

)
dv − hbo

∫ b2−b1

v=0
f(v)FL1(b2 − v)dv

= hinv − (∆ + hinv) F (b2 − b1)− (hinv + hbo)
∫ b2−b1

v=0
f(v)FL1(b2 − v)dv

= hinv − (hinv + hbo)
(

F (b2 − b1)FL1(b1) +
∫ b2−b1

v=0
f(v)FL1(b2 − v)dv

)

= 0,

or in other words ∫ ∞

v=0
f(v)FL1 (max{b1, b2 − v}) dv =

hinv

hinv + hbo
. (7)

This, plugging in b1 from Equation (6), yields the optimal b2.

When L1 = 0, a straightforward analysis yields that the optimal base-stock for the fast supplier is

b1 = 0, i.e., order for immediate delivery if and only if there is backlog, which is intuitive. In addition,

Equation (7) is replaced by

F (b2) =
hinv

hinv + ∆
when 0 ≤ ∆ ≤ hbo,

F (b2) =
hinv

hinv + hbo
otherwise.

(8)

6.2 Equilibrium Analysis with Immediate Deliveries

In what follows, we consider the specific case L1 = 0 and L2 = 1. This corresponds to the most extreme

situation, where the fast supplier allows immediate delivery, i.e., with no demand risk. Although the

same results can be obtained for L1 > 0, we focus on this simpler case, since the insights obtained are

representative of the general case.

As mentioned above, in this case, the base-stock level for the fast supplier is b1 = 0 when ∆ ≤ hbo, and

b1 = −∞ otherwise. Through Equation (8), we see that when the difference ∆ goes to zero, b2 goes to

the lower bound of the demand, Dmin. Thus α2 → Dmin

D
. Note, however, that when ∆ = 0, α2 = 0, that

is, the market share function α1 may be discontinuous at ∆ = 0, depending on whether Dmin = 0 or not.

It is also discontinuous at ∆ = hbo. Otherwise, when 0 < ∆ < hbo, α1 =
1
D

∫ ∞

b2

F (q)dq, or, equivalently

after the change of variables v = F (q),

α1 =
1
D

∫ hinv
hinv+∆

0

vdv

f
(
F
−1(v)

) . (9)

We can show the following result.
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Lemma 7 If the demand has a non-decreasing failure rate, i.e.,
f

F
is non-decreasing, then the market

share function α1 is convex in ∆ ∈ (0, hbo).

This lemma, together with Lemma 2, implies that when the demand failure rate is non-decreasing, then

the profit function of the slow supplier, 2, is well-behaved.

Similarly, in order to use Lemma 4, we would like to establish that
1
α1

is convex. Unfortunately, the

condition turns out not to be trivial. Thus, the profit function of the fast supplier, 1, may not behave

nicely. The following examples serve as illustrations.

Example 1 When the demand is uniform in [Dmin, Dmax], then α1 =
Dmax −Dmin

2D

(
hinv

hinv + ∆

)2

. Thus,

α1 and
1
α1

are convex in (0, hbo).

Example 2 When the demand is exponential with rate λ, then α1 =
hinv

hinv + ∆
. Thus, α1 and

1
α1

are

convex in (0, hbo).

Example 3 When the demand is Pareto with rate β ≥ 1, i.e., F (q) = (1+q)−β, then α1 =
(

hinv

hinv + ∆

)1−1/β

.

Thus, α1 is convex and
1
α1

is concave in (0, hbo).

Example 4 When the demand is normal with mean µ and standard deviation σ, then α1 is convex and
1
α1

is concave in (0, hbo).

Hence, in all four example, we can use Lemmas 3, 5 or 6. Below, we characterize the equilibrium

explicitly for the uniform and exponential distributions, for hbo = ∞.

Theorem 2 Assume that the demand is uniform in [Dmin, Dmax]. Then,

• when
c1 − c2

hinv
≤ −

(
1
2
− 1

2

√
1− Dmax −Dmin

Dmax + Dmin

)
≤ 0,

then there is a unique equilibrium peq
1 = peq

2 = c2;

• when

c1 − c2

hinv
≥

(
1 +

√
1− Dmax −Dmin

Dmax + Dmin

)3

2
(

Dmax −Dmin

Dmax + Dmin

) − 1
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then there is a unique equilibrium with

∆
hinv

=
{

2
(

Dmax −Dmin

Dmax + Dmin

)(
1 +

c1 − c2

hinv

)}1/3

− 1.

• otherwise, there is no equilibrium.

The theorem illustrates that even in the simplest case, for the uniform distribution, we find situations

where there is no equilibrium. In addition, the theorem provides some insight on the role of the variability

of the distribution on the equilibria.

Namely, given Dmax, when Dmin = 0, the uniform distribution has the largest spread. In that case,

we see that the third case never occurs, as the two first cases cover every possibility: there is always an

equilibrium. The intuition is that variability reduces the incentive of the fast supplier to outprice the

slow supplier, since the ”prize” of capturing the entire market by setting ∆ = 0, compared to the share of

settling for ∆ = ε very small, is zero. Thus, the fast supplier’s strategy is more stable (i.e., its best-response

function is continuous) and hence the equilibrium with ∆ > 0 can be reached.

When Dmin → Dmax, on the other hand, the market share difference between ∆ = 0 and ∆ = ε very

small is huge. Competition is thus very much focused on outbidding the competitor. Thus, we do not have

an equilibrium when
c1 − c2

hinv
> 0.

Interestingly, when c1 = c2, then there is equilibrium if and only if
Dmax −Dmin

Dmax + Dmin
≥ −8+4

√
5 ≈ 0.944.

Again, the larger the variability, the smaller the set of costs where equilibrium exists.

Figure 4 illustrates the three cases of the theorem, for a uniform distribution in [1, 2].

We present below a similar result for the exponential distribution.

Theorem 3 Assume that the demand is exponential. Then there is always a unique Nash equilibrium:

• when
c1 − c2

hinv
≤ −1, then there is a unique equilibrium peq

1 = peq
2 = c2;

• otherwise, at equilibrium
∆

hinv
= −1

2
+

√
c1 − c2

hinv
+

5
4
.

In this case, we observe that there is always an equilibrium. Note that when c1 = c2, the equilibrium is

such that ∆ ≈ 0.62hinv > 0. Thus, it is optimal for the fast supplier not to compete solely in price, trying

to outbid the slow supplier, but rather to charge a premium and share the market with the slow supplier.
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Figure 4: Best response functions p∗1(p2) and p∗2(p1) for a uniform demand [1, 2], hinv = 1 and a cost
c1 = 20. We see that, depending on the value of c2, we may or may not have an equilibrium. We illustrate
the three cases of the theorem: for c2 = 21, then at equilibrium ∆ = 0 and peq

1 = peq
2 = c2 = 21; when

c2 = 16, then we fall into the no-equilibrium case; and when c2 = 5,
c1 − c2

hinv
is large enough, and at

equilibrium ∆ > 0.
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Figure 5: Best response functions p∗1(p2) and p∗2(p1) for an exponential demand, hinv = 1 and a cost c1 = 20.
We see that, depending on the value of c2, we have an equilibrium with ∆ = 0 (when c2 = 22), or with
∆ > 0 (when c2 = c1 = 20).
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For the uniform and exponential distributions, when stocking out is very expensive, i.e., hbo = ∞,

we have found three possible competitive situations, already identified in Theorem 1. First, when the

fast supplier is significantly cheaper than the slow supplier, it will undercut its price and capture all the

market, in the same way as in the Bertrand competition model. Second, when the cost difference is

medium, there may be no equilibrium. And third, when the price difference is low (could be positive as for

the exponential distribution, or negative as for the uniform), the suppliers stabilize in a situation where

prices are differentiated, i.e., ∆ > 0, and share the market. It is also interesting that ∆ grows with c1− c2,

but that it grows less than linearly.

7 Approximation of Equilibria

As we have seen, the market share function α1 determines completely whether the pricing game has an

equilibrium. In the previous section, we were able to characterize α1 explicitly, because the inventory

problem is tractable for L2 = L1 + 1. In this section, we develop an approximation for the general case,

for L2 > L1 + 1. First, we assume that the buyer uses a double base-stock inventory policy. Second, we

develop the approximation for ∆ ≈ 0.

As we have seen, α1 is very steep for small values of ∆: this plays a critical role in the game, as the

steepness represents greater importance of price over the lead time difference. Thus, it determines the

incentive of the fast supplier to outbid the slow supplier with a lower price. For this reason, we choose to

develop an approximation of α1 around ∆ = 0.

In addition, computationally, α1 is difficult to calculate for small ∆, since the optimal base-stock levels

for the buyer are very sensitive to ∆. To find numerically these optimal levels takes a very long time.

Moreover, since optimization requires simulation, to obtain a higher accuracy, the size of the simulation

grows enormously. The asymptotic approximation of the market shares around ∆ = 0 can thus also be

used to alleviate computational effort.

We start by observing that, when ∆ > 0 and very small, the slow supplier will receive an order for

Dmin every period, and the fast supplier an order for the rest. Thus

lim
∆→0+

α1(∆) = 1− Dmin

D
.

At this point, we are interested in approximating
(

1− Dmin

D

)
−α1(∆) for small ∆. For this purpose,

we conducted an extensive simulation for different lead-time parameters, and hinv = 1, hbo = 9. For each
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case, we simulated 50000 period of a uniform demand [0,2] (and hence Dmin = 0, D), and we computed the

average cost of double base-stock policies. Among these, we selected the one that minimized the buyer’s

average cost, and this for different ∆ ∈ [0, 0.1]. We hence calculated α1 for different ∆. We found that

1− α1(∆) varied with ∆b. Figure 6 shows the variation of log(1− α1) with log(∆).
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Figure 6: Plot of log
((

1− Dmin

D

)
− α1(∆)

)
as a function of log (∆), for various lead-time parameters.

Clearly, we see that the behavior for the cases where L1 = 0 (left) is different to the rest (L1 > 0, right),
as the slopes are around 1 (left) and around 0.5 (right).

Since the relationship was roughly linear, we calculated the slope and intercept of the regression log(1−
α1) = SLOPE · log(∆) + INTERCEPT . This is summarized in Figure 7.

The simulation results seem to imply that two types of behaviors can occur:

• Either
(

1− Dmin

D

)
− α1(∆) grows linearly with ∆. This corresponds in the simulation to the case

L1 = 0.

• Or
(

1− Dmin

D

)
−α1(∆) grows with the square-root of ∆. This appeared in all the cases with L1 > 0.

We have performed similar simulations for a truncated normal distribution with µ = 1 and σ = 0.3,

and we have found similar different behavior between the cases L1 = 0 and L1 > 0.

To explain these two types of behavior, we develop an approximation of the market share function that

indeed identifies these two situations. The approximation is detailed in the appendix, but the main steps
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L1 L2 slope intercept
0 1 0.9436 0.4371
0 3 0.9227 -0.0083
0 5 0.8668 -0.2079
1 2 0.4560 -0.2710
1 4 0.5239 -0.5431
1 6 0.4239 -0.9188
2 3 0.4829 0.2097
2 5 0.4228 -0.4020
2 7 0.5640 -0.1791
5 6 0.3743 0.1310
5 8 0.5186 0.0374
5 10 0.4738 -0.1819

Figure 7: Summary of regression coefficients of log(1− α1) = SLOPE · log(∆) + INTERCEPT , for each
of the simulation cases.

are described next. First, we approximate the cost of the buyer as

C̃ = p2D + P
(

Dt >
b2 − b1

L2 − L1

)
E

Dt>
b2−b1
L2−L1





∆
(

Dt − b2 − b1

L2 − L1

)

+hinv

(
b1 −Dt+1 − . . .−Dt+L1

)+

−hbo

(
b1 −Dt+1 − . . .−Dt+L1

)−





+ P
(

Dt ≤ b2 − b1

L2 − L1

)
E

Dt≤ b2−b1
L2−L1





+hinv

(
b1 +

b2 − b1

L2 − L1
−Dt −Dt+1 − . . .−Dt+L1

)+

−hbo

(
b1 +

b2 − b1

L2 − L1
−Dt −Dt+1 − . . .−Dt+L1

)−





As a result, the optimal value for b2 − b1 satisfies

∆ = (hinv + hbo)P
(

b1 ≤ Dt+1 + . . . + Dt+L1 ≤ b1 +
b2 − b1

L2 − L1
−Dt

)
. (10)

In addition, we have that 1−α1(∆) =
1
D

b2 − b1

L2 − L1
. Equation (10 yields two cases with significantly different

behavior.

• If L1 = 0, then Equation (10) can be rewritten as

∆
hinv + hbo

= P
(

b2 − b1

L2 − L1
≥ Dt

)

which implies that 1− α1(∆) =
1
D

F−1

(
∆

hinv + hbo

)
.
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Thus, when f (Dmin) > 0, F (q) ≈ f (Dmin) (q −Dmin), which implies that 1 − α1(∆) ≈ Dmin

D
+

1
f (Dmin) D

(
∆

hinv + hbo

)
. We this observe a linear variation of the market share for small ∆, just

what we found for L1 = 0 in Figure 6. Hence,

α1(∆) =
(

1− Dmin

D

)
− k

(
∆

hinv + hbo

)
. (11)

Note, however, that when f (Dmin) = 0, the variation is no longer linear. When F (q) ≈ a(q−Dmin)b,

with b > 1 (in which case f (Dmin) = 0), the approximation becomes

α1(∆) =
(

1− Dmin

D

)
− k

(
∆

hinv + hbo

)1/b

. (12)

This situation takes place for distributions such as a truncated normal.

• If L1 > 0, then Equation (10) can be approximated by

∆
hinv + hbo

≈ fL1(b1)E
(

b2 − b1

L2 − L1
−Dt

)+

Again, when f (Dmin) > 0, E (q −Dt)
+ ≈ 1

2f (Dmin) (q −Dmin)2 and hence

∆
hinv + hbo

≈ 1
2
fL1(b1)f (Dmin)

(
b2 − b1

L2 − L1
−Dmin

)2

.

and hence 1−α1(∆) ≈ Dmin

D
+

1
D

√
2

fL1(b1)f (Dmin)

√
∆

hinv + hbo
. This implies that the market share

for small ∆ decreases with the square root of ∆, as noticed in Figure 6. Hence,

α1(∆) =
(

1− Dmin

D

)
− k

√
∆

hinv + hbo
. (13)

Finally, when f (Dmin) = 0, and F (q) ≈ a(q−Dmin)b, with b > 1, then E (q −Dt)
+ ≈ a

b + 1
(q −Dmin)b+1

and hence

α1(∆) =
(

1− Dmin

D

)
− k

(
∆

hinv + hbo

)1/(b+1)

. (14)

Thus, we see that the market share of the fast supplier, 1, typically decreases either linearly with ∆,

when L1 = 0, or with the square-root of ∆, when L1 > 0, for small price differences, as described by

Equations (11) and (13).

It is interesting to see that the effect of inventory cost, hinv + hbo, only plays a role as a scaling factor

of ∆. In addition, the lead time difference does not play a role in the approximation, only L1 does.
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In what follows, we compute approximate equilibria, for the case L1 > 0, Dmin = 0. Keeping in mind

that the market share must be positive, the analysis is done for 0 ≤ ∆ ≤ hinv + hbo

k2
. Within this range, we

have that α1 is convex, but it turns out that
1
α1

is neither convex or concave. Thus, we cannot use Theorem

1. However, we can easily derive, for this particular market share function, the equilibrium outcomes.

Theorem 4 When

α1(∆) =

(
1− k

√
∆

hinv + hbo

)+

,

then,

• when
c1 − c2

hinv + hbo
≤ − 1

4k2

then there is a unique equilibrium peq
1 = peq

2 = c2, and hence α1(∆eq) = 1;

• when

− 1
4k2

≤ c1 − c2

hinv + hbo
≤ 1

4k2

then there is no equilibrium;

• when
1

4k2
≤ c1 − c2

hinv + hbo
≤ 3

k2

then there is a unique equilibrium with

∆
hinv + hbo

=
(

1
5k2

+
√

1
5

c1 − c2

hinv + hbo
+

1
25k2

)2

> 0;

• otherwise, when
c1 − c2

hinv + hbo
≥ 3

k2

then there is a unique equilibrium peq
1 = c1 and peq

2 = c1 − hinv + hbo

k2
, and hence α1(∆eq) = 0.

The theorem identifies the same type of equilibria obtained in Theorem 1. Again, when there is an

equilibrium, either one of the suppliers is wiped out the market (c1 − c2 very large or very small), or both

coexist with a positive price difference. That only occurs when
1

4k2
≤ c1 − c2

hinv + hbo
≤ 3

k2
.
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8 Conclusion

As we have seen, including lead time considerations into price competition leads to significantly more

complex results than the ones predicted by the traditional asymmetric Bertrand model. We have identified

three different equilibrium types, both in the exact and the approximated models. Depending on the range

of costs, and the type of demand distribution, we obtain one sort of equilibrium or another.

(A) When c1− c2 is very small (negative), supplier 1 takes supplier 2 out of the market. The equilibrium

price is peq
1 = c2, i.e., the fast supplier prices low enough to put supplier 2 out of business. This is

identical to the standard asymmetric Bertrand result.

(B) When c1 − c2 is medium low, no equilibrium exists. We have observed the result both for the exact

model for the uniform distribution; exact with demand such that 1/α1 is concave, e.g., the normal

demand; and the approximated model.

(C) When c1 − c2 is medium high, suppliers share the orders of the buyer, while offering different prices.

This situation did not appear in the asymmetric Bertrand result. We have identified a case where

price differentiation is stable, and a higher cost supplier with a lead time advantage can capture some

business, offering more expensive express delivery.

(D) When c1 − c2 is very high, the fast supplier cannot offer a low enough price to be competitive with

the slow supplier. As a result, peq
2 is set sufficiently low to ensure that by offering peq

1 = c1, the fast

supplier does not capture any market share.

One of the questions raised by our results is to understand how to deal with case (B): no equilibrium.

There, the pricing game between the suppliers does not have a set of static pure strategies, that are

unilaterally optimal for the players. The best-response functions to a competitor’s price are well-defined,

but do not lead to an equilibrium, as they are discontinuous. In reality, in a dynamic setting, one may see

suppliers moving prices up and down, reacting to each other’s prices, and never converging to a stable static

price. Thus, one could analyze the dynamic pricing game, and derive subgame-perfect equilibria. However,

this is technically very challenging, since then the buyer behaves strategically, possibly adopting dynamic

base-stock policies as well. Another option is to consider mixed strategies; this is not appropriate in our

game since we are considering a one-shot game in prices in an infinite-horizon replenishment setting and in

such an infinite horizon, the player would observe their competitor’s price and adjust theirs immediately.
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Hopefully, the other types of equilibria found in the analysis are consistent with academic research as

well as practice. Cases (A) and (D) are examples of deterrence pricing: the most competitive supplier sets

a price so that its competitor cannot profitably enter the market. Case (C) shows that it is stable to have

the fast and expensive supplier charges a premium for fast delivery. In essence, this fast supplier gives up

on competing on low cost and settles for a more reasonable strategy of higher margin and smaller volume.

This type of strategies can be observed in the Adidas and Trigema mentioned in the introduction.

At this point, we would like to point out several extensions to the existing results. First of all, the

infinite-horizon average profit analysis can be extended to include the discounted profit case. Also, when

such a long horizon is not consistent with reality, e.g., for short life-cycle products, sourcing with suppliers

with different lead times may be an even more interesting strategy for the buyer, since there is a limited

potential to serve demand with the longer lead time supplier. We hence expect, for the same cost difference,

to observe larger price differences in equilibrium.

Finally, in our model, we have assumed that there was no fixed cost associated with an order. This

naturally lead to using base-stock policies with each supplier. What happens when there are set-up costs?

The buyer would purchase components using an (s, S) policy with each supplier. The pricing game could

be studied in this situation, where the fixed charge Ki, the variable cost ci and the lead time Li are given

inputs, and the price pi is the strategy of the supplier.
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A Proofs

A.1 Proof of Lemma 2

Proof. If α1 is convex then
d2α1

d∆2
≥ 0. Let p2 ∈ (p1 − (L2 − L1)hbo, p1) satisfy the first-order condition,

i.e.,
dΠ2

dp2
= −(p2 − c2)

dα2

d∆
+ α2 = (p2 − c2)

dα1

d∆
+ 1− α1 = 0.

Then,

d2Π2

dp2
2

= −(p2 − c2)
d2α1

d∆2
+ 2

dα1

d∆
≤ 0.

Thus Π2 must be increasing and then decreasing, and hence pseudo-concave.

A.2 Proof of Lemma 3

Proof. When α1 is convex, using Lemma 2, we have that Π2(p1, p2) has a unique maximum in (p1− (L2−
L1)hbo, p1). Let p0

2 be this maximizer, and let p0
2 = p1 when the maximum is achieved when p2 → p1, and

p0
2 = p1 − (L2 − L1)hbo when the maximum is achieved when p2 → p1 − (L2 − L1)hbo.

When p1 ≤ c2, it is clear that the best option for supplier 2 is to avoid entering the market, i.e., p2 = c2,

since otherwise it would suffer a loss.

When p1 > c2, it is clearly better to enter the market. There, the function p0
2 can be characterized

through the first-order condition: p0
2− c2 =

α2(p1 − p0
2)

−dα1

d∆
(p1 − p0

2)
. The left-hand side is increasing in p0

2, and the

right-hand side increasing in p1− p0
2. It is clear that, when p1 increases, p0

2 must increase, but not as much

as p1. Thus, the slope of p0
2 is between 0 and 1. Thus, there is a2 such that for p1 ≤ c2 + a2, p0

2 = p1 − ε

and for p1 > c2 + a2, p0
2 < p1.

In addition, Π2(p1, p
0
2(p1)) is increasing in p1, and using the envelope theorem, and the first-order

condition,
dΠ2(p1, p

0
2(p1))

dp1
= (p0

2 − c2)
dα1

d∆
= α2 ∈ [0, 1].

This implies that Π2(p1, p
0
2(p1)) ≥ Π2(p1, p1 − (L2 − L1)hbo) = p1 − (L2 − L1)hbo − c2 if and only if

p1 ≤ c2 + e2 for some constant e2. Thus, we have identified the four cases identified in the lemma.
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A.3 Proof of Lemma 4

Proof. If
1
α1

is convex then α1
d2α1

d∆2
≤ 2

(
dα1

d∆

)2

. Let p1 ∈ (p2, p2 + (L2 − L1)hbo) satisfy the first-order

condition, i.e.,
dΠ1

dp1
= (p1 − c1)

dα1

d∆
+ α1 = 0.

Then,

d2Π1

dp2
1

= (p1 − c1)
d2α1

d∆2
+ 2

dα1

d∆
=
−α1

d2α1

d∆2
+ 2

(
dα1

d∆

)2

dα1

d∆

≤ 0.

Thus Π1 must be increasing and then decreasing, and hence pseudo-concave.

A.4 Proof of Lemma 5

Proof. The proof follows exactly the proof of Lemma 3. The only difference arises from the fact that, if

α1 is discontinuous at ∆ = 0, then it may be optimal to set p∗1 = p2 in order to push the slow supplier out

of the market. This is true if and only if Π1(p2, p2) = p2 − c1 ≥ Π1(p0
1(p2), p2). As before, Π1(p0

1(p2), p2)

increases with p2 with slope smaller than 1. Thus, there exists c1 + e1 above which it is optimal to set

p∗1(p2) = p2, and below which p∗1(p2) = p0
1(p2). This is a point of discontinuity in p∗1. Note, that there is

continuity when α1 is continuous.

In addition, when c1 + a1 < p2 ≤ c1 + e1, the first-order optimality condition is satisfied:

(p0
1 − c1)

dα1

d∆
+ α1 = 0,

and hence, using the implicit function theorem,

dp0
1

dp2
=

(
dα1

d∆

)2

− α1
d2α1

d∆2

2
(

dα1

d∆

)2

− α1
d2α1

d∆2

≤ 1.

A.5 Proof of Lemma 6

Proof. Clearly, when p2 + (L2 − L1)hbo ≤ c1, we have p∗1(p2) = c1. Otherwise it is optimal for the fast

supplier to enter the market, by setting c1 < p1 < p2 + (L2 − L1)hbo.

When
1
α1

is concave, then any point satisfying the first-order conditions is a minimum of profit. As a

consequence, the best price is either p1 = p2 or p1 = p2 + (L2 − L1)hbo − ε. We must hence compare two
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profits: Π1(p2, p2) = p2 − c1 and Π1(p2 + (L2 − L1)hbo − ε, p2) = (p2 + hbo − ε− c1)α1 ((L2 − L1)hbo − ε) .

Thus, it is clear that there is c1+e1 above which p∗1(p2) = p2, and below which p∗1(p2) = p2+(L2−L1)hbo−ε.

A.6 Proof of Theorem 1

Proof. In order to find equilibrium, we must look for the intersection points of the curves characterized

by Lemmas 3 and 5 or 6 (in which case a1 = e1). Of course, the intersection can occur at three different

points: either peq
1 = peq

2 , or peq
1 − peq

2 = (L2−L1)hbo, or 0 < peq
1 − peq

2 < (L2−L1)hbo. Clearly, the first two

cases only happen when one of the suppliers drives the other out of the market. The third case takes place

when c1 + a1 < p2 ≤ c1 + e1 and c2 + a2 < p1 ≤ c2 + e2, together with ensuring that the curves p0
1 and p0

2

intersect. Since in that segment the best-response functions are continuous,
dp∗1
dp2

≤ 1 and
dp∗2
dp1

∈ [0, 1], we

have an intersection if and only if limε→0+ p∗1(c1 + e1 − ε)− (c1 + e1) ≤ (c2 + e2)− limε→0+ p∗2(c2 + e2 − ε).

It is clear that all these equilibria are unique.

A.7 Proof of Lemma 7

Proof. Let φ(x) =
x

f
(
F
−1(x)

) . If the demand’s failure rate is non-decreasing, then this is a non-

decreasing function, as

φ
(
F (x)

)
=

F (x)
f (x)

is non-increasing in x. Then
dα1

d∆
= − hinv

D(hinv + ∆)2
φ

(
hinv

hinv + ∆

)
,

and hence
d2α1

d∆2
= 2

hinv

D(hinv + ∆)3
φ

(
hinv

hinv + ∆

)
+

h2
inv

D(hinv + ∆)4
φ′

(
hinv

hinv + ∆

)
≥ 0.

A.8 Proof of Theorem 2

Proof. For this uniform distribution, α1 =
Dmax −Dmin

Dmax + Dmin

(
hinv

hinv + ∆

)2

(see Example 1). Thus, α1 and

1
α1

are convex. Let γ =
Dmax −Dmin

Dmax + Dmin
.
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First, the best-response function of supplier 1 is characterized by a1 = −∞, for p2 ≤ c1 + e1, p∗1(p2) =

2c1 + hinv − p2, which implies ∆ = 2c1 − 2p2 + hinv ≥ 0, and e1 such that

4e1

(
hinv − e1

)

h2
inv

= γ,

(condition where the profit of setting p1 = c1 + e1 and using p1 = p0
1(c1 + e1) are equal), i.e.,

e1 = hinv

(
1
2
− 1

2

√
1− γ

)
.

Second, the best-response function of supplier 2 is continuous, p∗2(p1) = c2 for p1 ≤ c2, and increasing

for p1 > c2.

When c2 ≥ c1 + e1, we fall in the first case of Theorem 1. Notice that when Dmin = 0, c2 ≥ c1 + e1 is

equivalent to
c1 − c2

hinv
≤ −1

2
. The second case never occurs, as hbo = ∞. The third case corresponds to the

equilibrium where the first-order conditions are satisfied:

p1 − c1

hinv
=

1
2

hinv + ∆
hinv

p2 − c2

hinv
=

1
2γ

(
hinv + ∆

hinv

)3

− 1
2

(
hinv + ∆

hinv

)

By substracting the two equations, we can find the equilibrium ∆:
(

hinv + ∆
hinv

)3

= 2γ

(
1 +

c1 − c2

hinv

)
.

This has a solution such that p2 ≤ c1 + e1 or ∆ ≥ −2e1 + hinv when
(

2hinv − 2e1)
hinv

)3

≤ 2γ

(
1 +

c1 − c2

hinv

)

i.e., after substitution,
(
1 +

√
1− γ

)3
≤ 2γ

(
1 +

c1 − c2

hinv

)
or

c1 − c2

hinv
≥

(
1 +

√
1− γ

)3

2γ
− 1

Notice that when Dmin = 0, γ = 1, and this is equivalent to
c1 − c2

hinv
≥ −1

2
.

With this, we have identified the situation corresponding to case three in Theorem 1. In any other case

besides this and c1 − c2 ≤ −e1, there is no equilibrium.
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A.9 Proof of Theorem 3

Proof. For the exponential distribution distribution, α1 =
hinv

hinv + ∆
(see Example 2). Thus, α1 and

1
α1

are convex.

First, the best-response function of supplier 1 is characterized by a1 = −∞, e1 = hinv, and for p2 ≤
c1 + e1, p∗1(p2) = ∞. Thus, there can be no equilibrium when p2 < c1 + e1. When p2 = c1 + e1, then any

price p1 above p2 yields the same profit to supplier 1.

Second, the best-response function of supplier 2 is continuous, p∗2(p1) = c2 for p1 ≤ c2, and increasing

for p1 > c2.

Again, the first case of Theorem 1 corresponds to c2 ≥ c1 + e1. Since hbo = ∞, the second case of

the theorem never occurs. The third case corresponds to p2 = c1 + e1 = c1 + hinv. In that situation, the

first-order condition of supplier 2 is satisfied, i.e.,

p2 − c2

hinv
=

(
hinv + ∆

hinv

)2

−
(

hinv + ∆
hinv

)

Substituting p2 = c1 + hinv (required for supplier 1 to be in equilibrium, we have that
(

hinv + ∆
hinv

)2

− hinv + ∆
hinv

− 1 =
c1 − c2

hinv
,

which yields
∆

hinv
= −1

2
+

√
c1 − c2

hinv
+

5
4
.

A.10 Proof of Theorem 4

Proof. Let a =
k

hinv + hbo
. Since we are interested in situations with small ∆, we consider that ∆ <

hbo(L2 − L1) always.

We have

dΠ1

dp1
= (p1 − c1)

(
a

2
√

∆

)
−

(
1− a

√
∆

)
= (p2 − c1)

(
a

2
√

∆

)
− 1 +

3
2
a
√

∆

dΠ2

dp2
= (p2 − c2)

(
a

2
√

∆

)
− a

√
∆.

The best reaction for supplier 2 is always to set p2 = c2 when p1 ≤ c2 and p2 =
1
3
c2 +

2
3
p1, i.e.,

∆ =
p1 − c2

3
when p1 − c2 ≤ 3

a2
, and p2 = p1 − 1

a2
, otherwise.

On the other hand, supplier 1 may consider three strategies and select the best:
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(1) p1 = p2, yielding Π1 = p2 − c1;

(2) or find the unique price that satisfies the first-order condition

√
p1 − p2 =

1
3a

+
1
3

√
1
a2
− 3(p2 − c1),

when the square root is well-defined and the corresponding market share is non-negative;

(3) or p1 = c1, yielding Π1 = 0.

Figure 8 shows the profit Π1 for different parameters of a. We see that options (1) or (2) are better

depending on the values of a.

10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Profit of supplier 1

p
1

Π
1

a=0.4
a=0.5
a=0.6

Figure 8: Plots of supplier 1 profit Π1 as a function of p1, for different parameters of a and c1 = 10, p2 = 11.
We observe that depending on the value of a, we may select p∗1 = p2 or p∗1 > p2, with a discontinuous jump

at a = 0.5 =

√
1

4(p2 − c1)
.

It turns out that the second option is the best for supplier 1 if and only if

−1 ≤ a2(p2 − c1) ≤ 1
4
.

The first option is to capture all the market by outbidding supplier 2, and it corresponds to p2 > c1 +
1

4a2
.

The third option corresponds to the situation where p2 < c1 − 1
a2

. Figure 9 shows the best-response

function of supplier 1 as a function to p2. We clearly identify option (1) for large p2. Then, after a jump,

option (2) is the most advantageous. Finally, for smaller p2, the best choice is (3): p1 = c1.
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Figure 9: Best-response function p∗1(p2) for supplier 1 when a = 1 and c1 = 10. Observe that for prices p2

below 9, the best response is to price at cost, with a resulting market share of 0, since ∆ ≥ 1/a2.

With the best-response functions, we compute the price equilibria of the system. We have four cases

to consider.

When a2(c1− c2) ≤ −1
4
, i.e., when the slow supplier has a cost c2 significantly higher than c1, it is not

able to compete, since supplier 1 prices it out the market, by setting p1 = c2: peq
1 = peq

2 = c2. Thus, when

a is very large, we obtain a result similar to the asymmetric Bertrand competition model.

The second possible case is that no equilibrium exists: supplier 1 prices supplier 2 out of the market

as soon as it enters, and when supplier 2 does not enter, supplier 1 sets a high price that leads 2 to entry.

This happens when

−1
4
≤ a2(c1 − c2) ≤ 1

4
,

which captures the case when both suppliers have the same cost.

Finally, the third possibility is that both suppliers obtain a positive market share. This occurs when

1
4
≤ a2(c1 − c2) ≤ 3.

Here, the algebra yields that
√

∆ =
1
5a

+

√
c1 − c2

5
+

1
25a2

,

p2 = c2 + 2∆,
p1 = p2 + ∆.
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Finally, there is a last case when

a2(c1 − c2) ≥ 3.

Here, the cost difference is so large that supplier 1 cannot compete and is thrown out of the market

completely. Thus, peq
1 = c1 and peq

2 = peq
1 − 1

a2
.

B Derivation of Market Share Approximation

Below, we detail how we obtain the approximation presented in Section 7.

When ∆ = 0, the double base-stock policy is optimal. Indeed, the base-stock level of supplier 1 is equal

to the level of the newsboy, when supplier 1 is the only supplier and the demand is equal to Dt −Dmin.

Thus, at ∆ = 0, the optimality equation is

P
(
Dt + . . . + Dt+L1−1 − L1Dmin ≥ b1

)
= FL1(b1) =

hinv

hinv + hbo
.

Also, b2 = b1 + (L2 − L1)Dmin is the optimal level for supplier 2. This guarantees that supplier 2

delivers exactly Dmin at every period.

Consider now that how α1 varies for ∆ > 0. Supplier 2 is used in small quantities above Dmin. That

is, using a base-stock policy, b2 > b1 + (L2 − L1)Dmin. The amount to be shipped from supplier 2 is on

average around (b2 − b1)/(L2 − L1) per period. This is because the amount of stock in transit is equal to

b2 − Y L1
t ≈ b2 − b1, and the transit time L2 − L1.

In these conditions, the event of having an inventory position at supplier 1 larger than b1 has a very

small probability of happening. Our approximation is based on the assumption that two such events never

occur in two consecutive periods. Intuitively, this occurs when the order placed at t − (L2 − L1) (due to

arrive and used to serve demand at t + L1) is larger than the demand Dt. Thus, the inventory position for

supplier 1 is b1−Dt +Q2
t−(L2−L1) > b1. Approximately, this occurs with probability equal to the stationary

probability of Dt ≤ Q2
t−(L2−L1), which is very small when ∆ ≈ 0. In this situation, the order placed at

supplier 1 is 0, and the order placed at supplier 2 is Dt.

When, on the other hand, Dt > Q2
t−(L2−L1), then the order placed at supplier 1 is Dt−Q2

t−(L2−L1) and

at supplier 2 Q2
t−(L2−L1).

We can rewrite Equation (1), where we will take conditional expectations on Dt > Q2
t−(L2−L1) or
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Dt ≤ Q2
t−(L2−L1). We count the purchasing cost at t and the inventory cost taken at t + L1.

C = p2D + P(Dt > Q2
t−(L2−L1))EDt>Q2

t−(L2−L1)





∆
(
Dt −Q2

t−(L2−L1)

)

+hinv

(
b1 −Dt+1 − . . .−Dt+L1

)+

−hbo

(
b1 −Dt+1 − . . .−Dt+L1

)−





+ P(Dt ≤ Q2
t−(L2−L1))EDt≤Q2

t−(L2−L1)





hinv

(
b1 + Q2

t−(L2−L1) −Dt −Dt+1 − . . .−Dt+L1

)+

−hbo

(
b1 + Q2

t−(L2−L1) −Dt −Dt+1 − . . .−Dt+L1

)−





As we said, this can be approximated by

C̃ = p2D + P
(

Dt >
b2 − b1

L2 − L1

)
E

Dt>
b2−b1
L2−L1





∆
(

Dt − b2 − b1

L2 − L1

)

+hinv

(
b1 −Dt+1 − . . .−Dt+L1

)+

−hbo

(
b1 −Dt+1 − . . .−Dt+L1

)−





+ P
(

Dt ≤ b2 − b1

L2 − L1

)
E

Dt≤ b2−b1
L2−L1





+hinv

(
b1 +

b2 − b1

L2 − L1
−Dt −Dt+1 − . . .−Dt+L1

)+

−hbo

(
b1 +

b2 − b1

L2 − L1
−Dt −Dt+1 − . . .−Dt+L1

)−





We can optimize C̃ over b1 and b2 − b1 separately.

0 =
dC̃

d(b2 − b1)
(L2 − L1)

= −∆P
(

Dt >
b2 − b1

L2 − L1

)

+P
(

Dt ≤ b2 − b1

L2 − L1

)
E

Dt≤ b2−b1
L2−L1

{
hinv − (hinv + hbo)FL1

(
b1 +

b2 − b1

L2 − L1
−Dt

) }

and

0 =
dC̃

db1

= P
(

Dt >
b2 − b1

L2 − L1

) {
hinv − (hinv + hbo) FL1 (b1)

}

+P
(

Dt ≤ b2 − b1

L2 − L1

)
E

Dt≤ b2−b1
L2−L1

{
hinv − (hinv + hbo)FL1

(
b1 +

b2 − b1

L2 − L1
−Dt

) }

We can combine both equations and obtain, on the one hand, FL1 (b1) =
hinv + ∆
hinv + hbo

, and, on the other

hand,

∆ = P
(

Dt ≤ b2 − b1

L2 − L1

)
E

Dt≤ b2−b1
L2−L1

{
hinv + ∆− (hinv + hbo) FL1

(
b1 +

b2 − b1

L2 − L1
−Dt

) }

= (hinv + hbo)P
(

Dt ≤ b2 − b1

L2 − L1

)
E

Dt≤ b2−b1
L2−L1

{
FL1 (b1)− FL1

(
b1 +

b2 − b1

L2 − L1
−Dt

) }

= (hinv + hbo)P
(

b1 ≤ Dt+1 + . . . + Dt+L1 ≤ b1 +
b2 − b1

L2 − L1
−Dt

)
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