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Abstract

This article studies the e¤ectiveness of two di¤erent antitrust policies by char-

acterizing the network structure of market-sharing agreements that arises un-

der those settings. Market-sharing agreements prevent �rms from entering each

other�s market. The set of these agreements de�nes a collusive network, which

is pursued by antitrust authorities. This article shows that under a constant

probability of inspection and a penalty equal to �rm�s limited liability, �rms form

collusive alliances where all of them are interconnected. In contrast, when the an-

titrust policy reacts to prices in both, probability of inspection and penalty, �rms

form collusive cartels where they are not necessarily fully interconnected. This

implies that more competitive structures can be sustained in the second case than

in the �rst case. Notwithstanding, antitrust laws may have a pro-competitive ef-

fect in both scenarios, as they give �rms in large alliances more incentives to cut

their agreements at once.
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1 Introduction

Cartels exists and they are present among us even if we are not able to see them.

Collusive practices create concern to antitrust authorities, which devote considerable

time and e¤orts in order to discover and prosecute them.

Among di¤erent collusive practices, we �nd market-sharing agreements. These

agreements are agreements by which �rms divide up a market and agree not to en-

ter each other�s territory. In the present article, market-sharing agreement are modeled

as bilateral agreements and the set of these reciprocal agreements gives rise to a collusive

network among �rms.

One goal of antitrust authorities is to weaken �rms�incentive to form and to main-

tain collusive agreements over time in order to increase market e¢ ciency. This article

addresses this point by studying the e¤ectiveness of antitrust policy to deter the for-

mation of collusive agreements in a social network context.

Toward that ends, this article examines the collusive network structure that arises

under the presence of two di¤erent antitrust policies. One of these policies is de�ned

by a �xed probability of inspection, and a penalty equal to the �rm�s limited liability.

The other policy is characterized by a probability of inspection that depends on prices,

and by a �ne related to damage that collusive agreements have caused to consumers.

In the present network framework, the probability of being detected depends on

the network structure as it depends on the number of agreements that each �rm has

signed. That is, the probability of �rm i�s being detected depends not only on whether

�rm i is inspected by the antitrust authority but also on whether any �rm that has

formed an agreement with i is inspected. If a �rm is inspected and a market-sharing

agreement exists, all �rms involved are penalized. However, the �rm in consideration

may be detected without being inspected because any �rm that has an agreement with

it, is inspected.

When the antitrust authority reacts to prices, the previous relationship is strength-

ened because the probability of inspection is not �xed but depends on the agreements

that each �rm has signed. In this case the probability that a �rm being caught de-

pends not only on the agreements that this �rm has signed but also on the number of

agreements that its criminal partners have signed.

We provide the stable network characterization in the two antitrust settings. First

of all, it worth saying that in the absence of the antitrust authority, a network is stable

if its collusive cartels are large enough. I show that when an antitrust authority is
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considered, however, structures that are more competitive can be sustained through

bilateral agreements.

Furthermore, I show that under certain conditions, the two policies have a pro-

competitve impact. As the probability of inspection increases, �rms in large cartels

have more incentives to renege on all their collusive agreements at once, and it might

lead to break-down collusion.

Comparing both policies, when the probability of inspection is �xed, member�s

cartels are fully interconnected, i.e., components are complete. However, when the

probability of inspection is sensitive to prices, components are not necessary complete.

This result implies that more competitive structures may arise with respect to the �rst

case.

This article brings together elements from the literature of social networks, collusion

(particularly, market-sharing agreements), and law enforcement.

Networks is currently a very active �eld of research. Prominent contributions to this

literature include, among others, Jackson andWolinsky (1996), Goyal (1993), Dutta and

Mutuswami (1997) and Jackson and van den Nouweland (2005). In particular, in �rst

paper, the formation and stability of social networks are modeled when agents choose

to maintain or destroy links using the notion of pair-wise stability. We follow Jackson

and Wolinsky (1996) and Jackson and van den Nouweland (2004) to characterize the

stable and the strongly stable networks.

Asides from these theoretical articles, there is also more and more literature that

applies the theory of economic networks to models of oligopoly. In particular, the

present article is closely related to Belle�amme and Bloch (2004) and Roldán (2010).

Belle�amme and Bloch (2004) have analyzed the collusive network of market-sharing

agreements among �rms, but they do not consider the existence of antitrust authorities.

Therefore, their results may be limited under those circumstances. Roldán (2010),

however, studies how the presence of an antitrust authority a¤ects the market-sharing

agreements made by �rms and examines the network structure that arises when each

�rm takes into account the cost, imposed by competition authorities, from signing these

collusive agreements. She shows that under the presence of an antitrust authority more

competitive structures are possible to sustain over time. The present article compares

the e¤ect of di¤erent antitrust policies in the collusive network structure.

Regarding the collusion literature, after the seminal contribution of Stigler (1950),

collusive cartels have been extensively studied. For an excellent reference of this liter-

ature, see Vives (2001).
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As the present article, there are a number of articles that study the e¤ect of antitrust

policy on cartel behavior. Block et al. (1981) is a �rst systematic attempt to estimate

the impact of antitrust enforcement on horizontal minimum price �xing. Their model

explicitly considers the e¤ect of antitrust enforcement on the decision of �rms to �x

prices collusively. They show that a cartel�s optimal price is an intermediate price

(between the competitive price and the cartel�s price in absence of antitrust authority)

and that this intermediate price depends on the levels of antitrust enforcement e¤orts

and penalties.1

However, the interest for studying the e¤ect of the antitrust policy on the collusive

behavior has recently reemerged. For example, Harrington (2004, 2005) explores how

detection a¤ects cartel pricing when detection and penalties are endogenous. Firms

want to raise prices but not suspicions that they are coordinating their behavior. Har-

rington (2005), assumes that the probability of detection is sensitive to price changes,

he shows that the steady-state price is decreasing in the damage and in the probability

of detection. These results are in line with the results of the present article in the sense

of the pro-competitive e¤ect of the antitrust policy. More recently, Motchenkova et al

(2010) analyze the e¤ectiveness of antitrust policy in a repeated oligopoly model when

both �nes and detection probabilities are endogenous. The main di¤erence between the

present article and those articles is that this article studies the impact of the antitrust

policy on the collusive behavior in a social network framework.

The outline of this article is as follows: Section 2 presents the model of market

sharing agreements and provides general de�nitions concerning networks. Section 3

characterizes the pair-wise stable and strong stable network when the probability of

inspection is �xed and the penalty is equal to �rm�s limited liability; while Section 4

characterizes the network structure under an antitrust authority (AA) that reacts to

prices. Section 5 analyzes the impact of the AA over competition under these two

di¤erent policies. Section 5 concludes. All proof are relegated to the Appendix.

1Besanko and Spulber (1989, 1990) with a di¤erent approach, use a game of incomplete information
where the �rms�common cost is private information and neither the antitrust authority nor the buyers
observe the cartel formation. They �nd that the cartel�s equilibrium price is decreasing in the �nes.
LaCasse (1995) and Polo (1997) follow this approach.
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2 The model

I model the interaction between an antitrust agency and �rms which form pair-wise

collusive agreements or collusive links. The set of these collusive links gives rise to a

network. I am interested in the structure of the collusive network that emerges under

the presence of an antitrust authority (AA). This analysis is carried out in two di¤erent

settings which will be described bellow.

Networks

Let N = f1; 2; :::ng denote a �nite set of risk neutral symmetric �rms. For any i; j 2 N ,
a pair-wise relationship between the two �rms is represented by a binary variable gij 2
f0; 1g. In our context, gij = 1 means that �rm i has signed an agreement with �rm

j and vice versa, and gij = 0 otherwise. A network g =
n
(gij)i;j2N

o
is a description

of the pair-wise relationship between �rms. Let g + gij denote the network obtained

by adding link ij to an existing network g; and let us denote by g � gij the network
obtained by deleting link ij from an existing network g.

Some networks that play a prominent role in our analysis are the following two: the

complete network and the empty network.

The complete network, gc, is a network in which gij = 1;8i; j 2 N . In contrast, the
empty network, ge, is a network in which gij = 0;8i; j 2 N; i 6= j.
Formally, a �rm i is isolated if gij = 0;8j 6= i and 8 j 2 N .

Paths and Components A path in a network g between �rms i and j is a sequence

of �rms i1; i2; :::; in such that gii1 = gi1i2 = gi2i3 = ::: = ginj = 1. We will say that a

network is connected if there exists a path between any pair i; j 2 N .

A component g0 of a network g is a maximally connected subset of g: Note that from

this de�nition, an isolated �rm is not considered a component. A component g0 � g is
complete if gij = 1 for all i; j 2 g0. For a complete component g0, mi (g

0) + 1 denote its

size, i.e., it is the number of �rms belonging to g0. Let Ni (g) = fj 2 Nnfigjgij = 1g
be the set of �rms in Nnfig with whom �rm i has signed a collusive agreement. Let

mi (g) be the cardinality of the set Ni (g).
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Collusive market sharing agreements

I focus on one particular kind of collusive agreement: the market sharing agreement.

A reciprocal market-sharing agreement is an agreement whereby two �rms agree not

to enter each other�s market.2 Throughout the paper, I assume symmetric markets.

Following Belle�amme and Bloch (2004), henceforth BB, I assume that each �rm is

associated to one market, i.e., its home market. In spite of that, each �rm has incentives

to enter and compete in all foreign markets. However, �rm i does not enter into foreign

market j, and vice versa, if a reciprocal market-sharing agreement exists between them,

i.e., if gij = 1.

Let ni be the number of active �rms in market i. That is, ni = N � mi (g) + 1.

Let �ij (�) be the pro�ts of �rm i on market j. I assume that individual pro�ts are

decreasing in the number of active �rms in the market, i.e. �ij (nj � 1) � �ij (nj) � 0.
Moreover, I assume that individual pro�ts are log-convex in the number of active �rms

in the market, i.e.,
�ij(nj�1)
�ij(nj)

� �ij(nj)

�ij(nj+1)
.3

Firm i has two sources of pro�ts. Firm i collects pro�ts on its home market, �ii (ni),

and on all foreign market where there does not exist an agreement,
X
j;gij=0

�ij (nj). The

symmetric �rm and symmetric market assumptions allow us to write �ij (�) = � (�).
Total pro�ts of �rm i, therefore, can be written as follows:

�i = � (ni) +
X
j;gij=0

� (nj) (1)

It is assumed that �rms have limited liability, i.e., �i � 0 is the maximum amount

that the �rm could pay in case a penalty were imposed by an antitrust authority.

The antitrust enforcement and the collusive network

The antitrust authority is de�ned as a pair f� (�) ; F (�)g, where � (�) 2 [0; 1) is the prob-
ability that a market-sharing suit is initiated, and F (�) � 0 represents the monetary

penalty that a �rm must pay if it is convicted of market-sharing agreements. That is,

the AA inspects �rms with a positive probability � (�), and the technology is such that
when the AA inspects, if there exists a market-sharing agreement, the AA detects it.

2It is assumed that these agreements are enforceable.
3If pro�t functions satisfy long-convex property, then individual pro�ts are convex in the number

of active �rms in the market, i.e. �ij (nj � 1)� �ij (nj) � �ij (nj)� �ij (nj + 1).
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Moreover, the AA also identi�es the two �rms involved in the agreement. If a �rm is

sued for making a market-sharing agreement, the AA is able to detect, without error,

whether a market-sharing agreement has occurred. Moreover, if it has occurred, the

AA can detect the �rms that signed that agreement. In such a case, both �rms are pe-

nalized and each one must pay F (�). In this paper, I consider two regimes of antitrust
policy. In one of them, the probability of inspection is constant and the pecuniary

punishment is high as it is possible, that is, it is equal to the total pro�t of �rms. In

the second case, the probability of inspection depends on the number of agreement that

each �rm has signed and the �ne is related to the damage.

In what follows I will show how the organization of collusive conspiracy interacts

with the enforcement policy. Particularly, we will restrict our attention on the interac-

tion between the structure of illegal agreements and the probability of being detected.

Given the technology of inspection assumed in this article, when a �rm i forms a

new market-sharing agreement, it will increase its probability of being detected. That

is, the probability of �rm i being caught by the AA depends not only on whether

�rm i is inspected but also depends on whether any �rm with which �rm i has a link

is also inspected.4 Thus, a �rm i will not be detected if i is not inspected and if it

is not inspected any �rm j that has an agreement with i. That is, Pr (Detected i) = 1�

Pr (No Detected i), and Pr (No Detected i) = Pr

0BB@No inspected i \
j 6=i
gij=1

No inspected j

1CCA
or equivalently,5

Pr (No Detected i) = (1� � (�))
Y
j 6=i
gij=1

(1� � (�)) (2)

Therefore, the probability of being detected depends on how many agreements �rm

i has signed, i.e., mi = N � ni.6

From the AA�s point of view, the structure of relationships described bymi = N�ni
generates scale economies on detection as

Pr ( Detected i) = 1� (1� � (�))
Y
j 6=i
gij=1

(1� � (�)) > Pr ( Inspected i) = � (�)

4We only consider the immediate link.
5It is assumed that events "No inspected i" and "No inspected j" are independent each other.
6Let us observe that the number of terms in the operator

Y
is mi = N � ni.
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Lets now to sum up the relationship between �rms and the competition authority.

First, the antitrust agency commits itself by announcing the rules under which a case

may become investigating and the �ne to be paid if a �rm is found guilty of collu-

sion. Then, given the antitrust rules, �rms have the choice of forming market sharing

agreements or not. If a �rm chooses the former, it gets

�i Pr(Not Detected i) +
�
�i � F (�)

�
Pr(Detected i) (3)

In the absence of any collusive agreement signed by �rm i, its pro�ts can be written

as �i = � (N) +
NX

j;gij=0

� (nj).

Stability

Pair-wise stable networks The following approach is taken by Jackson and

Wolinsky (1996). A network g is pair-wise stable if and only if: (i) 8i; j 2 N such that

gij = 1; �i (g) � �i (g � gij) and �j (g) � �j (g � gij); and (ii) 8i; j 2 N such that

gij = 0; if �i (g + gij) > �i (g) then �j (g + gij) < �j (g).

This stability notion is a relatively weak criterion in the sense that it provides broad

predictions since the �rm�s deviations are constrained. A pair-wise stability criterion

only considers deviations on a single link at a time.7 Furthermore, the pair-wise stability

notion considers only deviations by a pair of players at a time.8

Nevertheless, that criterion provides a test to eliminate the unstable networks and

it should be seen as a necessary, but not su¢ cient condition for a network to be stable.

Strongly pair-wise stable networks In order to obtain a stronger stability

concept we allow deviations by coalitions of �rms. We allow �rms to delete some or all

market-sharing agreements that they have already formed.

We say that a network is pair-wise strongly stable if it is immune to deviations by

coalitions of two �rms. I consider the simultaneous linking game introduced by Myerson

(1991). Each �rm i chooses the set si of �rms with which it wants to form a link. Thus,

gij = 1 if and only if j 2 si and i 2 sj. Let g (s1; s2; :::; sn) denote the network formed
when every i chooses si..

7On the contrary, for example, it is possible that a �rm would not bene�t from forming a single
link but would bene�t from forming several links simultaneously.

8It could be that larger groups of player can coordinate their actions in order to all be better o¤.
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A strategy pro�le fs�1; s�2; :::; s�ng is a pair-wise strong Nash equilibrium of the game

if and only if it is a Nash equilibrium of the game and there does not exist a pair of �rms

i and j and strategies si and sj such that �i
�
g
�
si; sj; s

�
�ij
��
� �i

�
g
�
s�i ; s

�
j ; s

�
�ij
��
and

�j
�
g
�
si; sj; :::; s

�
�ij
��
� �j

�
g
�
s�i ; s

�
j ; :::; s

�
�ij
��
with a strict inequality for one of the

two �rms. A network g is strongly pair-wise stable if and only if there exists a pair-wise

strong Nash equilibrium of the game fs�1; s�2; :::; s�ng such that g = g (s�1; s�2; :::; s�n).
It is possible to prove that any strongly pair-wise stable network is pair-wise stable.

Thus, the strong stability notion can be thought of as su¢ cient condition for stability.

3 Collusive networks under a constant inspection

probability and �nes equals to pro�ts

The antitrust policy

In this part, I de�ne an antitrust authority by a constant and exogenous probability of

inspection, � (�) = � 2 [0; 1), and by a monetary penalty, F (�) = �, that a �rm must

pay if it is convicted of market-sharing agreements.

In the economic literature of optimal enforcement, �nes are usually assumed as

socially costless. Therefore, when the AT seeks to deter collusion, the �nes should be

set at the maximal level in order to minimize the inspection cost.9 An implication of

this is that the �nes need not to be related to the illegal pro�ts or to the harm that

the o¤enders caused. They only need to be as high as it is possible in order to deter

collusion. This implication holds as long as there are not legal errors in the detection

process (false convictions), or as long as the �nes do not imply bankruptcy to convicted

�rms. Motta and Polo (2003), Rey (2003) and Spagnolo (2004) assume penalties that

are independent of the damages. In contrast, Harrington (2004, 2005) and Motchenkova

(2008) assume �nes that are sensitive to illegal gains. In particular, Harrington (2004,

2005) considers a penalty that is sensitive to the price charged by collusive �rms and

also a �xed penalty with respect to the endogenous variables.

In the present case, F (�) = �, that is F (�) = � (ni) +
X
k;gik=0

� (nk). This case is

comparable with Harrington�s assumption in the sense that one part of the penalty,

� (ni), is relate with the illegal gains as the number of active �rms ni depends on the

9This holds when �rms are risk-neutral.
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number of agreements that �rm i has signed. The other part of the penalty,
X
k;gik=0

� (nk),

is �xed since it does not depends on the collusive behavior of �rm i.

Regarding the inspection process, I assume that antitrust authorities have constant

and exogenous budgets that allow them to inspect a �x number of �rms, i.e. � 2 [0; 1)
is a constant and exogenous probability of inspection. It can be also interpreted as

a surprise inspection policy, that although it may be e¤ective,10 it is hard to �nd as

a current practice. Consequently, when � is constant, we rewrite the probability of

detected �rm i as follows Pr (Detected i) = 1� (1� �)N�ni+1

The payo¤s

By using the expression (3), it is possible to compute �rm i�expected pro�ts in this

case as:

(1� �)N�ni+1�i +
�
1� (1� �)N�ni+1

� �
�i � F (�)

�
(4)

where F (�) = �i and �i = � (ni) + � (nj) +
X

k 6=j;gki=0

� (nk).

Then, �rm i�s incentive to form an agreement with �rm j is given by the following:

��ij = (1� �)
N�ni+1

"
� (ni � 1)� � (ni)� � (nj)� �

 
� (ni � 1) +

X
k 6=j;gki=0

� (nk)

!#
(5)

Let J ij (ni; nj; nk;�) denote the bracket expression in (5). Then, it can be rewritten

as:

��ij = (1� �)
N�ni+1 J ij (ni; nj; nk;�) such that gki = 0

It is worth noting that, when � = 0, the �rm i�s incentive to form a market-sharing

agreement with �rm j only depends on the characteristics of markets i and j. However,

when the antitrust authority exists, ��ij will also depend on the characteristics of all

10Friederiszick and Maier-Rigaud (2007) argue that "suprise inspections are by far the most e¤ective
and sometimes the only means of obtanining the necessary evidence...."
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market k in which �rm i is active.11

We are interested in the sign of ��ij because it is what is relevant to decide whether

or not one more link is formed. That is, if ��ij � 0, �rm i has an incentive to form

an agreement with j. Therefore, when � 6= 1, ��ij � 0 only if J ij (ni; nj; nk;�) � 0.

Hence, in the following, we will focus only on J ij (ni; nj; nk;�).

Forming one more link has several con�icting consequences. From �rm i�s point of

view, notice that when a link is formed with �rm j, �rm j agrees not to enter market

i. Therefore, the number of active �rms in market i will decrease and it increases its

pro�ts by � (ni � 1) � � (ni). Given the reciprocal nature of this agreement, �rm i

does not enter market j either. Then, �rm i loses access to foreign market j and it

decreases its pro�ts by �� (nj). Additionally, if �rm j is inspected, and it is inspected

with probability �, �rm i will lose � (ni � 1) +
X

k 6=j;gki=0

� (nk).

Note that, as � (�) is a decreasing function, when nj decreases, it decreases the
incentive to lose a more pro�table market by forming a link. Then, J ij is increasing in

nj.

Likewise, J ij is increasing in nk. As nk gets smaller, the expected costs of signing an

agreement with j become greater.12 Hence, it decreases the incentive to form a collusive

agreement.

On the other hand, the relationship between J ij and ni is ambiguous. As � (�)
is a convex function, when the number of competitors in its home market decreases,

� (ni � 1) � � (ni) increases, hence J ij increases. However, in such a case, �� (ni � 1)
increases, i.e., the expected cost of forming an agreement increases. Hence, this reduces

the incentive to form it.

Concerning the antitrust policy, when the probability of inspection � increases, J ij
decreases, because it increases the expected cost of forming a link.

11We just consider the case when mi = N � ni 6= 0. However, when �rm i is isolated, i.e. mi =
N � ni = 0, the �rm i�s incentive to form an agreement is slightly di¤erent from (5). That is,

�� = � (N � 1) (1� �)2 � � (N)� � (nj)�
X

k 6=j;gki=0
� (nk)

�
1� (1� �)2

�
.

12The expected cost is �

0@� X
k 6=j;gki=0

� (nk)

1A.
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The network characterization

In this section, we will characterize pair-wise stable and strongly pair-wise stable net-

works under an AA de�ned by a �xed probability of inspection and a �ne equal to

the total pro�t of a guilty �rm. Let us recall that the pair-wise stability notion might

be thought of as a necessary but not su¢ cient condition for stability, and the strong

pair-wise stable criterion provides a su¢ cient requirement for a network to be stable

over time. Also, recall that any strong pair-wise stable network is pair-wise stable.

Proposition 1 A network g is pair-wise stable if and only if it can be partitioned into
a set of isolated �rms and fully interconnected distinct components, g1,...,gL of di¤erent

sizes m (gl) 6= m (gl0), 8l; l0 such that neither an isolated �rm has an incentive to form

a link with another isolated one nor a �rm i that belongs to the smallest component has

an incentive to cut a link with a �rm inside it.

The next Section shows that in this context the pair-wise stable network always

exists.

It is important to note that the AA imposes a change in the minimal size of the

components and it does not restrict the set of isolated �rms. In the absence of the AA,

i.e., the BB�s setting, a network is stable if its alliances are large enough. That is, the

complete components have to reach a minimal size, i.e., m�.

However, under the presence of the AA, that threshold, depends on � and on g.

Pair-wise strongly stable collusive network

We re�ne the set of stable networks by using the strong stability condition. Now we

allow �rms to delete a subset of links already formed and we will study when a �rm has

no incentive to renege on its agreements. This point is very important in our context

because a network composed by large alliances will be hard to sustain.

Proposition 2 A network g is pair-wise strongly stable if and only if it is pair-wise

stable and no �rm prefers to cut all its agreements at once, that is

(1� �)N�n+1 � (n) � � (N) + (N � n)� (n+ 1) +
X
k;gi=0

� (nk)
�
1� (1� �)N�n+1

�
;

8 n = N�m+1 and 8 m = m (gl)

(6)
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Accordingly, the fact that a �rm has no incentives to renege on all its links at once

is a su¢ cient condition for strong stability. To see this, assume that a �rm reneges on

one of its agreements. Then, it gains access to a market whose pro�ts are, at least,

equal to the pro�t it makes on its home market after cutting a link. Therefore, if a �rm

has incentive to cut one agreement, the most pro�table deviation for it is to renege on

all its agreements at once.

Thus, in a strongly stable network, component sizes satisfy a more demanding con-

dition.

It is worth remarking that a strongly stable network may fail to exist. Notwith-

standing, one important advantage of the strong criterion is to provide a more accurate

prediction of which network structures will prevail.

The AA and the set of stable networks

In this setting, the presence of the antitrust authority imposes a cost to each formed

link, and as a result, the expected gain of being a part of a collusive agreement may not

be positive.13 That is, the expected sanction imposed by the AA a¤ects the incentive

participation constraint of each potential alliance�s member, and in turn changes the

set of possible network structures that can arise.

Given the network characterization of the previous section, we now analyze which

kind of stable networks can be sustained at di¤erent levels of the antitrust enforcement.

The set of pair-wise stable networks

First of all, a complete network is always pair-wise stable for su¢ ciently low ��s. Let

us de�ne �c := 1� 2�(2)
�(1)

.

Proposition 3 The complete network gc is pair-wise stable if and only if � � �c.

Being a part of a collusive agreement entails positive bene�ts. To serve a link

increases the pro�ts of �rms that participate in it, i.e., � (ni) is decreasing in ni. There-

fore, the complete network will be pair-wise stable as long as its costs, i.e., the expected

sanction are su¢ ciently low.

13It is, J ij := � (ni � 1)� � (ni)� � (nj)� �

0@� (ni � 1) + X
k 6=j;gki=0

� (nk)

1A ;8i; j.
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Second, the empty network arises as pair-wise stable for su¢ ciently high ��s. Let

us de�ne �e (N) := 1�
h

N�(N)
[�(N�1)+(N�2)�(N)]

i 1
2
, for 8N 2 [3;1) and �e (N) < 1.

Proposition 4 For 8N 2 [3;1), the empty network ge is pair-wise stable if and only
if � > �e (N).

For an isolated �rm, �e (N) is the threshold from which it has no incentive to

participate in an agreement when all other �rms also remain isolated. When � > �e (N),

the expected costs to form a link are so high, relative to its bene�ts, that no two �rms

will sign an agreement.

Moreover, observe that �e (N) is strictly decreasing in N . That is, as N increases,

the "loot" becomes less "attractive" (i.e., � (N) is decreasing in N), and therefore the

threshold will get smaller.

By straightforward computations, we can see that �e (N) < �c. Consequently, from

the above Propositions, we claim the following:

Claim 1 For � 2 (�e (N) ; �c], ge and gc belong to the set of pair-wise stable networks.

From Proposition 3 and 4, we can state that pair-wise stable networks always exist.

That is, �rst, for � � �c, the complete network belongs to the set of stable networks.
Second, for � > �e (N), the empty network will be stable. And given that �e (N) < �c,

for � 2 (�e (N) ; �c], ge and gc arise as pair-wise stable con�gurations.

When � 6= 0 there exists a positive probability of being caught in a market-sharing
agreement. Consequently, there exists a positive probability of losing pro�ts not only

in the market where the agreement is signed but also in markets in which the �rm is

active, i.e. in markets where the �rm does not collude.

For �rms in smaller alliances the cost of forming a link becomes more signi�cant,

relative to their bene�ts. That is, a �rm i inside a small alliance does not have much

to gain and has a lot to lose when one more link is made. More precisely, by signing

an agreement, it gains (1� �)� (ni � 1) � � (ni), that gets smaller as the alliance is
smaller;14 and it loses not only the access to pro�ts on foreign market j, � (nj), but it

also loses, in expected terms, �
P

k:gik=0

� (nk).

14Remember that the number of active �rms is greater in smaller components.
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Therefore, �rms in smaller components are more sensitive to the antitrust enforce-

ment.

The intuition provided above is summarized in the next Proposition. However,

before introducing it, let us de�ne

�� (ni) :=
� (ni � 1)� 2� (ni)

� (ni � 1) +
X

k 6=j;gik=0

� (nk)

That is, at �� (ni) a �rm i, with ni competitors in its home market, is indi¤erent to

form a link or not (i.e., J ij = 0). Therefore, when � > �
� (ni), then J ij < 0, and �rms i

and j do not sign a collusive agreement.

Proposition 5 For �rm i 2 g1 and �rm j 2 g2 such that m (g1) < m (g2), then

�� (n1) < �
� (n2).

From the Proposition follows that the threshold is smaller for �rms in smaller al-

liances (with larger number of competitors in their home markets). Then, as � becomes

greater, the AA �rstly tears down small alliances, i.e., the smaller components are more

sensitive to the antitrust policy. In the limit, �rms must decide to form a very large

alliance (complete network) or no alliance at all (empty network).

Proposition 6 For � = �c > 0, the only pair-wise stable networks are ge and gc.

Then, by setting � > �c, the AA completely deters the formation of collusive agree-

ments.

The set of pair-wise strongly stable networks

Now, we turn our attention to strongly stable notion and we answer which kinds of

networks arise as the AA changes its enforcement level. From the previous section, we

know that there will be some pair-wise stable networks that will not be stable against

changes in the agreements made by �rms. By applying (6), we assert the following:

Proposition 7 As � becomes greater, �rms in large components have more incentives
to delete all links at once.
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That is, as � increases, the strongly stable condition is harder to sustain in larger

components. In other words, faced with increasing �, a �rm has to consider whether

to maintain or to destroy its agreements. Therefore, the �rm balances the pros and

the cons of any decision. Namely, if a �rm maintains its agreements, its bene�ts are

(1� �)N�n+1
"
� (n) +

X
k;gi=0

� (nk)

#
.

Let us note that these bene�ts decrease as the probability of inspection (�) increases,

and the fall in the expected bene�ts is higher as m = N � n is higher.
Instead, if the �rm decides to destroy all its agreements, it is not only not penal-

ized now by the AA, but also it will gain access to markets where it was colluding

before. In such a situation, it will make pro�ts on all these new foreign markets, i.e.,

(N � n)� (n+ 1). Let us observe that these markets are more pro�table as the number
of competitors on them is smaller, i.e., as m = N � n is larger.
Therefore, �rms belonging to larger alliances have more incentives to cut all its

agreements at once as the AA increases the cost of forming links.

Now, let us consider the empty network under the strongly stable notion.

It is worth noting that if ge is pair-wise stable, it is also strongly pair-wise stable,

as the condition (6) is always satis�ed for �rms that remaining alone. That is, in an

empty network, �rms do not have any link, so the condition of not having incentives to

renege on all agreements at once, is redundant for any i 2 ge. Hence, we claim that

Claim 2 8� > �e (N) the empty network is always strongly pair-wise stable.

Accordingly, if for some � > �e (N) all alliances have been torn down by the antitrust

policy, the only network con�guration that exists is the empty one.

Examples

The following examples illustrate the changes that the AA imposes in the set of pair-

wise stable networks.15

Example 1 Pair-wise stable (ps) networks. Cournot competition with exponential in-
verse demand function P (Q) = e�Q

15See Roldán, 2008 for all calculation details.
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Let us recall that in this context � (n) = e�n. Assume that N = 5. The following

table depicts the set of pair-wise stable networks for di¤erent values of the antitrust

policy. First of all, it is useful to clarify some notations there.

In the table, the complete network is represented by f5g and, for example, f3; 1; 1g
denotes a network decomposed into two isolated �rms and one complete component of

size three.

Table 2

� Set of ps networks
� 2 [0; 0:015) f3; 2g ; f4; 1g ; f5g
� 2 [0:015; 0:04) f3; 1; 1g ; f4; 1g ; f5g
� 2 [0:04; 0:065) f2; 1; 1; 1g ; f3; 1; 1g ; f4; 1g ; f5g
� 2 [0:065; 0:21) f1; 1; 1; 1; 1g ; f3; 1; 1g ; f4; 1g ; f5g
� 2 [0:21; 0:25) f1; 1; 1; 1; 1g ; f4; 1g ; f5g
� 2 [0:25; 0:26) f1; 1; 1; 1; 1g ; f5g
� > 0:26 f1; 1; 1; 1; 1g

Thus, when � is su¢ ciently low (i.e., � < 0:015) the presence of the AA does not

change the set of pair-wise stable networks. However, when the antitrust enforcement

is su¢ ciently high (i.e., � > 0:26) the only pair-wise stable network is the empty one,

hence all �rms are active in all markets.

Consider now values for ��s between these two extreme cases. Although di¤erent

con�gurations arise, the main features to be highlighted are the following two. First,

when � increases, more structures that are competitive can be sustained through bi-

lateral agreements. In particular, when � becomes greater, the smaller components are

more sensitive to the antitrust policy. For example, when � 2 [0:015; 0:04) the network
structure f3; 2g is not stable because �rms in smaller components have incentives to cut
their agreements and the network f3; 1; 1g becomes stable.16 Second, as � increases the
set of stable network con�gurations becomes more polarized. That is, in our analytical

example, when � 2 (0:25; 0:26) the empty or complete networks are the only possible
stable network con�gurations. This can be understood because the AA imposes costs

of forming links and it reduces the pro�tability of each one. Hence, �rms decide either

to form more and more links, i.e. reduce the number of competitors in their home

16Likewise, it is noteworthy that the graph f3; 1; 1g is not pairwise stable in the BB�s setting, i.e.,
when � = 0.
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markets, in order to balance their bene�ts with their cost, or not forming a link at all

and by doing that they avoid the costs levied by the AA.

Now, the next example illustrates two special features of the strong criterion and

the impact of the AA on the set of strongly stable networks.

Example 2 Pair-wise strongly stable (pss) networks. Cournot competition for expo-
nential inverse demand function: P (Q) = e�Q

As in the last example, assume that N = 5. Given that a pair-wise strongly stable

network is always pair-wise stable, it su¢ ces to check condition (6) for all network

structures in Table 2 at di¤erent levels of the antitrust policy.

Table 3

� Set of ps networks Set of pss networks
� 2 [0; 0:015) f3; 2g ; f4; 1g ; f5g f3; 2g
� 2 [0:015; 0:04) f3; 1; 1g ; f4; 1g ; f5g it fails to exist

� 2 [0:04; 0:065) f2; 1; 1; 1g ; f3; 1; 1g ; f4; 1g ; f5g f2; 1; 1; 1g
� 2 [0:065; 0:21) f1; 1; 1; 1; 1g ; f3; 1; 1g ; f4; 1g ; f5g f1; 1; 1; 1; 1g
� 2 [0:21; 0:25) f1; 1; 1; 1; 1g ; f4; 1g ; f5g f1; 1; 1; 1; 1g
� 2 [0:25; 0:26) f1; 1; 1; 1; 1g ; f5g f1; 1; 1; 1; 1g
� > 0:26 f1; 1; 1; 1; 1g f1; 1; 1; 1; 1g

First of all, the example clari�es that the possible set of stable networks is reduced

by using the strongly stable criterion. However, the strongly stable network might fail

to exist and this is what happens for � 2 [0:015; 0:04).
Second, the incentive to free ride and delete all links is higher in larger alliances.

That is, when a �rm that belongs to a large alliance cuts all its agreements at once, it will

recover access to more pro�table markets than a �rm belonging to a small component.

In the example, the complete network f5g and the stable network f4; 1g do not pass
the strongly stable condition. By extending this argument, the empty network is the

only strongly stable network for � > 0:065.

Therefore, the antitrust policy is on the side of competition as long as it gives �rms

in large alliances more incentives to renege on their agreements at once.
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4 Collusive networks under endogenous antitrust

enforcement

The antitrust policy

In the EU and in the US, the current laws set a ceiling to the maximum �ne, and try to

relate the penalty to cartel�s consequences. The underlying reasons behind these two

features are the concern about �rms�ability to pay and the presence of legal errors.

That is, too high �nes may put at risk the �rms ability to continue compete in the

future. This is the reason for which antitrust authorities establish a maximum on �nes.

On the other hand, legal errors may deter some socially desirable behavior, like some

forms of legal cooperation between �rms which may be misjudged as collusive. In this

case, the �ne must be related to the harm caused or the gains produced to the cartel�s

members.

In this section, I assume that the �ne is equal to the damage, x (�), caused by the
collusive �rms. It is de�ned as the di¤erence between the actual �rm�s pro�ts and the

pro�ts that a �rm would have gotten in the absence of any collusive agreement. That

is,

x (n) = [� (n)� � (N)] ; x0 < 0; x00 < 0

Regarding the inspection process, it is worth noting that in recent antitrust cases,

investigations have begun with a complaint from buyers. That is, buyers observe anom-

alous prices and share their suspicions with competition authorities.

In this part, I assume that the probability of inspection,� (�), is related to the price
p (�). Since, price level depends on the number of active �rms in a market, the proba-
bility of inspection will �nally depend on the number of active �rms in the market.17

That is,

� (�) � � (n) ; �0 < 0; �00 < 0

Consequently, the probability of �rm i be detected, ' (�), is equal to:

' (ni; nj) = 1� (1� � (ni))
Y

j:gij=1

(1� � (nj))

The likelihood that i be detected increases as the number of active �rms in the home
17Alternatively, the probability of �rm i be inspected depends on the number of links that �rm i

has formed.
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market of �rm i decreases as well as the number of active �rms in home market of a

collusive partner of i18 also decreases.

The payo¤s

Given the network g, �rm i�s pro�ts are �i = � (ni)+
X
k;gik=0

� (nk). Under the presence

of an AA, they will be:

� (ni) +
X
k;gik=0

� (nk)� x (ni)' (ni; nl) ; 8l such that gil = 1

Let us assume now that �rm i is considering to sign an agreement with �rm j.

Consequently, �rm i compares pro�ts it obtains without the market sharing agreement

with �rm j, with �rm�s i pro�ts when it signs an agreement with �rm j. Therefore, in

this case, the �rm�s i incentive to sign an agreement with �rm j (J ij) is given by the

following expression:

J ij = � (ni � 1)� � (ni)� � (nj)� [x (ni � 1)' (ni � 1; nj � 1; nl)� x (ni)' (ni; nl)]

8l 6= j such that gil = 1.

In the current case, the �rm i�s incentives to sign an agreement with �rm j depends

not only on the structure of market i and j but also on market�s structure of all i�s

collusive partners.

Note that as � (�) is a convex function, � (ni � 1)� � (ni) increases as ni decreases.
However, as ni decreases, it increases not only the �ne that i would have to pay but also

it increases the probability with which �rm i is detected. Therefore, the relationship

between J ij and ni is ambiguous.

On the other hand, as � (�) is a decreasing function, nj decreases, the cost of form
a collusive agreement increases. Additionally, as nj decreases, the probability of �rm i

be detected increases. Then, it also increases the expected cost of sign an agreement

with j. Therefore, the �rm i�s incentives to sign an agreement with �rm j decrease as

nj decreases. Consequently, J ij is an increasing function of nj.

Finally, J ij is also an increasing function of nl since ' (�) is a decreasing function on
its argument. Therefore, as nl decreases, the expected cost of sign an agreement with

18All j such that gij = 1.

20



�rm j increases, and decreases the incentives to sign an agreement between �rm i and

j.

4.1 The network characterization

First of all, let us observe that a necessary condition for J ij � 0 is � (ni � 1)� � (ni)�
� (nj) > 0 and � (nj � 1)�� (nj)�� (ni) > 0. Consequently, this implies that if gij = 1,
then ni = nj = n.19

Therefore, I rewrite J ij � 0 as:

J ij = � (n� 1)� 2� (n)� [x (n� 1)' (n� 1; n� 1; n)� x (n)' (n; n)]

Let us de�ne n� as the minimum number of active �rms in a market such that

J ij � 0. Alternatively, let us denote �m� = N�n� as the maximal number of agreements
such that this condition holds.

Now, let us denote by �n� the maximal number of active �rms in a market such that

� (n� 1)�2� (n) > 0. Alternatively, let us de�ne m
¯
� = N � �n� as the minimal number

of agreements that a �rm has such that that condition holds.

Finally, let us note that given the conditions that de�ne each threshold, it is clear

that n� < �n�.

In this setting, when an endogenous AA exists, the characterization of a pair-wise

stable network is as follow.

Proposition 8 A pair-wise stable network can be partitioned into a set of isolated �rms
and components each of which has the same number of links or agreements, such that:

a) When in a pair-wise stable network max l=1;2;:::;p fm (gl)g= �m� + 1, this largest com-

ponent is complete. Moreover, if there exist more than one component, they are

also complete and their sizes could be equal to the size of the largest component.

Components whose sizes are less than the size of the largest component, they have

di¤erent sizes. In each component each �rm has at most �m� agreements.

b) When in a pair-wise stable network, max l=1;2;:::;p fm (gl)g> �m�+1, this largest com-

ponent is not fully interconnected. Moreover, if there exist more than one com-

ponent, they might not be complete and their sizes could be equal to the size of

19See Proof Lemma 1, Roldán (2008).
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the largest component. Components whose sizes are greater than �m� + 1 are not

complete and their members will have �m� agreements. On the contrary, compo-

nents whose sizes are smaller or equal to �m� + 1, they are fully interconnected

with di¤erent sizes and their members will have at most �m� agreements.

Given �m�, when the size of a component is greater than �m� + 1, �rms within that

component are not fully interconnected. Accordingly, in such a case, components are

not complete. Additionally, since each �rm in a collusive agreement must have the

same number of links as its partners, components are symmetric, i.e. all �rms within a

component have the same number of links.

Pair-wise strongly stable collusive network

We are interested in which kind of network are likely to survive. Consequently, we use

the strong stability de�nition in order to re�ne the set of stable networks.

A network g is pair-wise strongly stable if and only if it is pair-wise stable and no

�rm prefers to cut all its agreements at once, that is

� (n)�x (n)' (n; n) � � (N)+(N � n)� (n+ 1) 8 n = N�m+1 and 8 m = m (gl)

(7)

That is, since each �rm could unilaterally break the agreement it has, for a strong

stable network it is necessary that the net expected bene�ts of maintaining agreements

exceed the bene�ts to cut the N � n agreements at once.

4.2 The AA and the set of stable networks

In this section, I analyze the impact that an endogenous AA has in the market structures

that can arise. In particular, I address under which circumstances the complete network,

i.e. N local monopolies, may arise. Moreover, I analyze under which conditions for the

antitrust policy it is possible to observe more competitive market structures.

Proposition 9 The complete network gc is pair-wise stable when

(1� � (2))N�2
�
x (1) (1� � (1))2 � x (2) (1� � (2))

�
� � (2)
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Proposition 10 When n� = N , the empty network is the unique pair-wise stable net-
work.

When n� = N , J ij (N � 1) < 0, therefore the only pair-wise stable network is the

empty one.

4.3 The set of pair-wise strongly stable networks

The concept of strong stability allows to predict which kind of networks are more likely

to survive to changes in agreements by any coalition of individuals.

Proposition 11 The complete network gc is pair-wise strong stable if � (1) is su¢ -
ciently small.

That is, the expected bene�ts of maintaining N � 1 agreements are higher than
the bene�ts of destroying N � 1 links when the probability of inspection is su¢ ciently
small. Accordingly, in such a case, the complete network is stable against any changes

in links by any coalition of �rms.

Claim 3 The empty network ge is the unique pair-wise strong stable when n� = N .

As before, the large components are more unstable than smaller ones under certain

conditions.

Proposition 12 The larger components have more incentives to destroy all its agree-
ments at once when the probability of being detected increases more than the �ne imposed

to a guilty �rm as the number of agreements increases.

The bene�ts of reneging all agreements is higher in lager components since, in such

a cases, these markets are more pro�table, i.e., they have less number of competitors.

Additionally, �rms in larger components have less incentive to maintain all their agree-

ments because the probability of being detected increases more than the expected �ne

as the number of agreements increase.
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4.4 Examples

The following examples illustrate the changes that an endogenous antitrust policy im-

poses in the set of pair-wise stable networks.20

Example 3 Pair-wise stable (ps) networks. Cournot competition with exponential in-
verse demand function P (Q) = e�Q

Assume that N = 5. For an exponential inverse demand function, the pro�t will be

� (n) = e�n. In the present context, the probability with which a �rm will be inspected
21 depends on the number of agreements that it has signed, i.e. it depends on the

number of active �rms in that market.

The following table depicts di¤erent examples of antitrust policy in the current

context. The table show the relationship between the number of active �rms in a

market with the probability with which a �rm will be inspected. All these functions

satisfy the properties established for � (n).

Table 4
Antitrust Policies

ni �1 (ni) �2 (ni) �3 (ni)

1 0:600 0:600 1:000

2 0:125 0:250 0:590

3 0:012 0:064 0:333

4 0:004 0:041 0:062

5 0:002 0:022 0:040

Thus, for example, when �i (ni) = �2 (ni) and ni = 3 the probability of inspect a

given �rm i is �2 (3) = 0:064.

The alternative policies in the table are ordered from lowest to highest sensitivity

to the number of active �rms in a market. For them, I compute the function J ij that

de�nes n� and �m�. Then, I obtain the set of pair-wise stable networks.

20See Appendix for all calculation details.
21When the antitrust authority is exogenous, the probability of inspection is constant.
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Table 5

�i (ni) n� �m� Set of pair-wise stable networks

�1 (ni) 2 3 ...

�2 (ni) 3 2 ..

�3 (ni) 4 1 ..

The fourth column in the table illustrates the set of pair-wise stable networks.

For example, when �i (ni) = �2 (ni), the set of pair-wise stable networks is composed

by three networks. One of them is composed by one component of four �rms and

one isolated player. The second element in the set is a network formed by only one

component. Finally, the last element in the set is a network that is decomposed by

two complete components, one of them formed by three �rms and the other one by two

�rms. In the �rst two network con�gurations, the components are incomplete. They

are pair-wise stable because no �rm has incentives to sign one more agreement, seeing

that mi = �m� for all i di¤erent from the isolated �rm.

From the table, it follows that as the policy becomes more sensitivity to the number

of active �rms in a market, the maximal number of agreements that a �rm may have

decreases. This restricts network con�gurations that may appear by allowing that more

competitive networks may arise as pair-wise stable. This is a positive impact of the

antitrust authorities.

Now, I use the condition (7) to obtain the set of pair-wise strong stable networks.

Example 4 Pair-wise strongly stable (pss) networks. Cournot competition for expo-
nential inverse demand function: P (Q) = e�Q

Following the last example, I assume that N = 5. I check whether the condition

(7) holds for all network con�gurations in Table 5 for the di¤erent antitrust policies.

According to this, the set of strong stable networks is as follow:
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Table 6

�i (ni) Set of ps networks Set of pss networks

�1 (ni) ...

�2 (ni) .. it fails to exist

�3 (ni) .. ..

Similarly to the exogenous context, when I apply the strong condition, the set

of pair-wise strong stable networks is reduced and sometimes it fails to exist. The

strong stable criterion provides a more accurate prediction about what kind of network

con�gurations may sustain in the time. Moreover, when �i (ni) = �1 (ni), the network

f4; 1g does not pass the strong stable condition and, in this case, it is not strong stable.
This is in line with what Proposition 12 establishes, i.e., larger components are more

sensitive to the antitrust policy.

5 The AA and its e¤ects on competition

From the previous analysis, we conclude that, when the AA set a �xed probability of

inspection, for � su¢ ciently small the complete network appears as pair-wise stable.

As � increases the smaller alliances are �rst in being destroyed by the antitrust policy.

In turn, the set of isolated �rms expands.

Moreover, as � becomes larger, m (g�h) also increases. From Proposition 7, however,

we know that large alliances are harder to sustain.

Therefore, as � increases, the empty network, ge, tends to emerge as the only pair-

wise strongly stable network. Let us recall that in an empty network, all �rms are

active in all markets. Then, we infer that the antitrust policy is a pro-competitive one.

On the other hand when the AA responds to the suspicion of the consumer, com-

ponents are not necessary complete in pair-wise stable networks. This is an important

result for the e¤ect of the AA on competitions since this implies that more competitive

structure may arise with respect to the �rst case. Moreover, the empty network arises
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as unique pair-wise stable when the policy is su¢ ciently sensitivity to the claims of

consumers.

As it is well known, in Cournot oligopolies with homogeneous goods, the social

surplus (V ) is increasing in the number of active �rms on the market.

When � (�) is su¢ ciently high, the ge is the only network that prevails over time.
Therefore, in such a case, V would be the maximum.

Although this probability of inspection may be the "advice" to give to the AA in

the case of it �x that probability, it may not be the optimal antitrust policy, because

the necessary costs to attain that enforcement level may outweigh its positive impact

on the social surplus. That is, in order to know whether the AA has a net positive

e¤ect on social welfare, we must also consider the cost of enforcement.

Thus, the net social welfare,W , depends on the network structure g (which depends,

at last, on the particular level of � (�)), as well as, on the cost of initiating a market-
sharing agreement suit against a �rm, C (� (�)).
Hence, if the AA were concerned about the optimal antitrust policy, then it would

have to choose � such that maximizes

W (g (�) ; C) = V (g (� (�)))� C (� (�))

Unfortunately, the optimal antitrust policy is di¢ cult to evaluate in our context

because of to the multiplicity on network con�gurations for each level of antitrust

enforcement. In our network context, g (� (�)) is not unique for each � (�). Moreover, a
particular network g can emerge as pair-wise stable for di¤erent levels of � (�).

6 Concluding Remarks

Under two di¤erent settings of antitrust policy, we have studied the stable collusive

network that arises when �rms sign market-sharing agreements among themselves in a

symmetric oligopolistic framework.

Naturally, the presence of an AA weakens �rm�s incentives to participate in a col-

lusive agreement because it reduces the net expected bene�t from signing them. In

the current network framework, the channels through which antitrust policy impacts

on competition has its peculiarities. Firms, considering whether to sign an agreement,

take into account the probability of being discovered rather than the probability of be-

ing inspected, and the �rst probability positively depends on the number of agreements
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that each �rm has signed.

We analyze a case where the probability of inspection is constant and the penalty

that the AA imposes is equal to the total pro�ts of a guilty �rm. In such a case, that

penalty depends on the network con�guration as a whole. On the other hand, when

the AA is endogenous, both the probability of inspection and the penalty depend on

the network con�guration.

When the probability of inspection is constant and the penalty is equal to the

total pro�t of a guilty �rm, we have shown that, the pair-wise stable network can be

decomposed into a set of isolated �rms and complete components of di¤erent sizes.

When the AA exists, however, we cannot de�ne a unique lower bound on the size of

complete components because it now depends on each network con�guration and on

the probability that a �rm being inspected. In turn, this implies that, although the

lower bound on the size of complete components may be greater than when the AA

does not exist, the set of isolated �rms enlarges and, �nally, more structures that are

competitive can be sustained through bilateral agreements.

On the other hand, when the antitrust policy is an endogenous one, the set of pair-

wise stable network can be partitioned into a set of isolated player and components

that are not necessarily fully interconnected. Given N , we can de�ne a lower bound on

the size of components. This bound is also related with the number of isolated �rms.

The lower bound on the size of components has an important impacts on de�ning

competition on the market. As the minimal number of �rms active in a market that

are necessary for make an agreement pro�table increases, it is possible to expect more

competitive structure. The comparison of this lower bound in both case, exogenous

and endogenous antitrust policy, is not straightforward as the lower bound in the �rst

case depends on the network con�guration.

We have also shown that antitrust laws, in both cases, have a pro-competitive e¤ect,

as they give �rms in large alliances more incentives to cut their agreements at once.

Therefore, the empty network might arise as the only strongly stable network.

An important policy implication of the present formulation is that the organization

of the illegal behavior matters. That is, the analysis of the optimal deterrence of market-

sharing agreements has to take into account the organizational structure of collusive

�rms. Furthermore, without considering the e¤ects of the organizational structure,

empirical studies may overestimate the contribution of e¤orts devoted to investigate
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and prosecute collusive agreements.22

In this article, we consider a relatively simple setting for analyzing the e¤ect of the

antitrust policy on the structure of criminal behavior. A particular extension form here

is how the internal structure of these conspiracies may a¤ect their observable behavior,

which, in turn, may throw some light on the optimal antitrust policy.

7 Appendix

Proof Proposition 1 Roldán (2008) provides necessary conditions on stability.

Now, let us consider the su¢ cient part. Consider a network g that can be decomposed

into a set of isolated �rms and distinct complete components, g1,...,gL of di¤erent sizes

m (gl) 6= m (gl0),8l; l0. Isolated players have no incentive to create a link with another
isolated one. As long as a �rm i, that belongs to the smallest component, does not

have incentives to cut a link with a �rm inside its component, then, by Lemma 3,

no �rm inside a component has incentives to cut a link. Additionally, given that

m (gl) 6= m (gl0),8l; l0, there do not exist two �rms belonging to di¤erent components
that have an incentive to form an agreement between themselves.�

Proof Proposition 2 ) Consider a pair-wise strong Nash equilibrium s�. Given

that any strongly pair-wise stable network is pair-wise stable, g (s�) can be decomposed

into a set of isolated �rms and complete components where no isolated �rm wants to

form a link with another isolated one and (??) holds. But assume, by contradiction, that
some component gl does not satisfy the condition (1� �)m � (N �m+ 1) � � (N) +

(m� 1)� (N �m+ 2) +
P
� (nk) (1� (1� �)m) 8m = m (gl). Then s� is not a Nash

equilibrium because any �rm i in gl has a pro�table deviation by choosing s0i = ;.
(= Assume network g can be decomposed into a set of isolated �rms and com-

plete components of di¤erent sizes, where inequality (??) holds. Also assume that
(1� �)m � (N �m+ 1) � � (N) + (m� 1)� (N �m+ 2) +

P
� (nk) (1� (1� �)m)

holds for all m = m (gl). We will show that the following strategies form a pair-wise

strong Nash equilibrium. For �rm i 2 gl it announces s�i = fjjj 2 gl; j 6= ig, however,
if i is isolated, it announces s�i = ;. Hence,
a) No isolated �rm i has an incentive to create a link with another �rm j, as i =2 s�j .

22Some empirical papers that estimate the deterrent e¤ect of the policy are, among others, Buccirossi
and Spagnolo,2005; Connor, 2006; Zimmerman and Connor, 2005.
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b) As (1� �)m � (N �m+ 1) � � (N)+(m� 1)� (N �m+ 2)+
P
� (nk) (1� (1� �)m)

holds for all m = m (gl), the �rm has no incentive to destroy all its m links. We must

consider, however, the �rm�s incentives to cut a subset of them. Let us assume it has an

incentive to delete a strict subset of its links, hence, it chooses to delete h links because

(1� �)h � (N �m+ 1) < � (N �m+ 1 + h)+h� (N �m+ 2)+
X

� (nk)
�
1� (1� �)h

�
Given that h � 1, then

� (N �m+ 1 + h) + h� (N �m+ 2) � (h+ 1) � (N �m+ 2)

Because of we are considering a strict subset of links, then h < m�1 and h+1 < m�1,
hence

(h+ 1) � (N �m+ 2) < (m� 1)� (N �m+ 2)

Therefore

(1� �)m � (N �m+ 1) < (1� �)h � (N �m+ 1) < (m� 1)� (N �m+ 2)

that contradicts our hypothesis.

c) No �rm i 2 gl has an incentive to create a link with �rm j 2 gl0 as i =2 s�j .

Moreover, as m (gl) 6= m (gl0) for all l 6= l
0
, no pair of �rms i 2 gl and j 2 gl0 has an

incentive to create a new link between them.

d) As (1� �)m � (N �m+ 1) � � (N)+(m� 1)� (N �m+ 2)+
P
� (nk) (1� (1� �)m)

holds for all m = m (gl), when m > 3; no pair of �rms have incentives to delete all

their links nor a subsets of their agreements and to form a link between them. Let us

assume, by contradiction, a pair of �rms, i 2 m and j 2 m0, has incentive to destroy

all their m and m0 links each and form a link between them. For �rm i, this is

(1� �)m�2 � (N �m+ 1)
< � (N � 1) + (m� 1)� (N �m+ 2) + (m0 � 1)� (N �m0 + 2)+

+
X

k 6=j 6=i;gik=0;

� (nk)� (1� �)m�2
" X
k 6=j 6=i;gik=0;

� (nk) +m
0� (N �m0 + 1)

#
(8)

Given that, the LHS(14)>LHS(6) and by straightforward computations we can show

that RHS(6)>RHS(14), when condition(6) holds then LHS(14)>RHS(14), which con-
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tradicts (14).�

Proof Proposition 3 (=)) If gc is pair-wise stable then

(1� �)� (1) � 2� (2) (9)

By rewriting the last condition, we get � � �c = 1� 2�(2)
�(1)

.

((=) If � � �c = 1 � 2�(2)
�(1)

, then (1� �)� (1) � 2� (2). Therefore, gc will be

pair-wise stable.�

Proof Proposition 4 Assume that N � 3.
(=)) If ge is pair-wise stable then,

(1� �)2 [� (N � 1) + (N � 2)� (N)] < � (N) + � (N) + (N � 2)� (N) (10)

and, by straightforward calculation,

� > 1�
�

N� (N)

[� (N � 1) + (N � 2)� (N)]

� 1
2

= �e (N)

((=) If � > �e (N), then (10) holds. Therefore, ge is pair-wise stable. �

Proof Proposition 5 For simplicity, let us assume two complete components g1
and g2. For each �rm i 2 g1, n1 is the number of active �rms in its market, and for
each �rm j 2 g2, n2 is the number of active �rms in its market.
Let us de�ne �� (ni) :=

�(ni�1)�2�(ni)

�(ni�1)+
X

k 6=j;gi=0

�(nk)

.

We are interested to know whether �� (n1) 7 �� (n2). That is,

� (n1 � 1)� 2� (n1)
� (n1 � 1) + (N � n2 + 1) � (n2)

7 � (n2 � 1)� 2� (n2)
� (n2 � 1) + (N � n1 + 1) � (n1)

By solving the last expression, we get

(N � n1 + 1) � (n1)� (n1 � 1)� 2� (n1)� (n2 � 1)� 2 (N � n1 + 1) [� (n1)]2 7

(N � n2 + 1) � (n2)� (n2 � 1)� 2� (n2)� (n1 � 1)� 2 (N � n2 + 1) [� (n2)]2
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In order to decide the sense of the inequality, we rearrange the above expression

into the following two parts:

(N � n1 + 1) � (n1) [� (n1 � 1)� 2� (n1)] 7 (N � n2 + 1) � (n2) [� (n2 � 1)� 2� (n2)]

� (n1)� (n2 � 1) 7 � (n2)� (n1 � 1)

If n1 > n2, then (i) (N � n1 + 1) < (N � n2 + 1); (ii) by Property 1, � (n1) < � (n2);
(iii) by Property 2, [� (n1 � 1)� 2� (n1)] < [� (n2 � 1)� 2� (n2)].

Therefore,

(N � n1 + 1) � (n1) [� (n1 � 1)� 2� (n1)] < (N � n2 + 1) � (n2) [� (n2 � 1)� 2� (n2)]
(11)

Additionally, if n1 > n2, then, by Property 3,
�(n2�1)
�(n2)

> �(n1�1)
�(n1)

Hence,

� (n1)� (n2 � 1) > � (n2)� (n1 � 1) (12)

Therefore, if, n1 > n2, by (11) and (12), then

�� (n1) < �
� (n2)�

Proof Proposition 6 By Claim 1, we know that, at � = �c, geand gc are pair-wise

stable.

Now, we must check, for � = �c, whether a �rm i has incentive to form an additional

agreement when n 6= 1 and n 6= N .
Therefore, we must verify whether J ij 7 0, that is,

� (n� 1)� 2� (n) 7 �
 
� (n� 1) +

X
k 6=j;gki=0

� (nk)

!

At � = �c, the above expression is

� (n� 1)� 2� (n) 7
�
1� 2� (2)

� (1)

� 
� (n� 1) +

X
k 6=j;gki=0

� (nk)

!
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After some calculations, we obtain

2 [� (n� 1)� (2)� � (n)� (1)] 7
X

k 6=j;gki=0

� (nk) [� (1)� 2� (2)]

By Property 2, � (1)�2� (2) > 0, and by Property 3, [� (n� 1)� (2)� � (n)� (1)] <
0. Therefore, at � = �c,

J ij < 0�

Proof Proposition 7 The partial derivative of (6) respect to � is:

� (m+ 1)
h
� (N �m+ 1) +

X
� (nk)

i
(1� �)m (13)

That is, as � increases, the incentive to maintain links decreases.

Now, we must check whether (13) is larger for �rms in large component. Without

loss of generality, assume that there are two components whose sizes are m1 + 1 and

m2 + 1 respectively, such that m1 > m2. After some computations, we can verify that,

for a su¢ ciently high m, the following holds:

� (m1 + 1) [� (N �m1 + 1) +m2� (N �m2 + 1)] (1� �)m1 <

�(m2 + 1) [� (N �m2 + 1) +m1� (N �m1 + 1)] (1� �)m2 �

Proof Proposition 8 Assume a network g is pair-wise stable. For all m > �m�

and for all m <m
¯
* J ij < 0. Therefore, in a pair-wise stable network, no �rm has more

than �m� agreements and no less than m
¯
*.

a) Firstly, given a component of size m (gl), the number m (gl) � 1 represents the
maximal number of agreement that every �rm in gl may have. Recall that �m� is the

maximal number of agreement such that J ij � 0. Since components are symmetric,

every �rm in gl has the same number of agreements. That is, for all pair of �rms i and

j that belong to gl, then mi = mj = m.

Assume that i and j belong to gl but gij = 0, if m < m (gl) � 1 � �m�, �rms i

and j will have incentives to form an agreement between them as m < �m�. But it

is a contradiction with the assumption of pair-wise stability of network g. Then, if

m (gl) � 1 � �m� all components must be complete and its member will have at most

�m� agreements.
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Second, let us assume that there exist two largest components such that their sizes

are equal to �m�+1. As we have shown, these components must be complete and every

�rm inside them has �m� agreements. No �rm inside these components has incentives to

sever a link with a �rm in the component as each �rm in them has �m� agreements. Let

us consider now a link between two �rms belonging to each component. These �rms

have no incentives to sign one more agreements, as long as each one has �m� agreements,

and this number is the largest number of links such that J ij � 0.
Finally, let us consider a �rm i 2 g1 and j 2 g2 such that �m� > m (g1) > m (g2).

The �rm j, that belongs to the smaller component, refuses to sign an agreement with

i, since ni < nj and then, � (nj � 1)� � (ni) < 0.
As N � �n > 1, the isolated players have no incentives to form any agreements.

b) Assume m (g0l) =maxl=1;2;:::;p fm (gl)g> �m�+1. Therefore, m (g0l)� 1 > �m�. Since

�m� is the maximal number of links such that J ij � 0, every �rm in g0l has �m� agreements

and then g0l will not be fully interconnected. If each �rm in g0l has lesser agreements

than �m�, it will have incentives to form one more link. If a �rm inside this component

has more agreements than �m� and/or the component is fully interconnected, every �rm

inside g0l will have incentives to sever a link, as long as m (g
0
l) � 1 > �m�; and thus g

would not be pair-wise stable.

Let us assume now another component g00l such that �m
�+1 < m (g00l ) � m (g0l) =maxl=1;2;:::;p fm (gl)g.

As before, g00l will not be fully interconnected and its members will have �m
� links. No

�rm inside g00l has incentives to cut a link as it has �m
� agreements. Moreover, no �rm

in g00l has incentives to sign another agreements since it has �m
� links.

Finally, let us consider that g00l is such that m (g
00
l ) � �m� + 1. Then, it follows the

proof in a).

As N � �n > 1, the isolated players have no incentives to form any agreements.

Proof Proposition 9 ) Consider a pair-wise strong Nash equilibrium s�. Given

that any strongly pair-wise stable network is pair-wise stable, g (s�) can be decomposed

as Proposition XXXX and (7) holds. But assume, by contradiction, that some compo-

nent gl does not satisfy that condition. Then s� is not a Nash equilibrium because any

�rm i in gl has a pro�table deviation by choosing s0i = ;.
(= Assume network g can be decomposed as Proposition XXX, where inequality

(7) holds. We will show that the following strategies form a pair-wise strong Nash

equilibrium. For �rm i 2 gl it announces s�i = fjjj 2 gl; j 6= ig, however, if i is isolated,
it announces s�i = ;. Hence,
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a) No isolated �rm i has an incentive to create a link with another �rm j, as i =2 s�j .
b) As � (n)� x (n)' (n; n) � � (N) +m� (N �m+ 1) holds for all m = m (gl), the

�rm has no incentive to destroy all its m links. We must consider, however, the �rm�s

incentives to cut a subset of them. Let us assume it has an incentive to delete a strict

subset of its links, hence, it chooses to delete h links because

� (n)� x (n)' (n; n) < � (N �m+ h+ 1) + h� (n+ 1)

Given that h � 1, then

� (N �m+ h+ 1) + h� (n+ 1) � (h+ 1) � (N �m+ 1)

Because of we are considering a strict subset of links, then h < m�1 and h+1 < m�1,
hence

(h+ 1) � (N �m+ 1) < m� (N �m+ 1)

Therefore

� (n)� x (n)' (n; n) < m� (N �m+ 1)

that contradicts our hypothesis.

c) No �rm i 2 gl has an incentive to create a link with �rm j 2 gl0 as i =2 s�j .
d) � (n)� x (n)' (n; n) � � (N) +m� (N �m+ 1) holds for all m = m (gl), when

m > 3; no pair of �rms have incentives to delete all their links nor a subsets of their

agreements and to form a link between them. Let us assume, by contradiction, a pair

of �rms, i 2 m and j 2 m0, has incentive to destroy all their m and m0 links each and

form a link between them. For �rm i, this is

(1� �)m�2 � (N �m+ 1)
< � (N � 1) + (m� 1)� (N �m+ 2) + (m0 � 1)� (N �m0 + 2)+

+
X

k 6=j 6=i;gik=0;

� (nk)� (1� �)m�2
" X
k 6=j 6=i;gik=0;

� (nk) +m
0� (N �m0 + 1)

#
(14)

Given that, the LHS(14)>LHS(6) and by straightforward computations we can show

that RHS(6)>RHS(14), when condition(6) holds then LHS(14)>RHS(14), which con-

tradicts (14).�
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Proof Proposition 10 Assume gij = 1. Then, ni = nj = n. Therefore, J ij can

be written as

� (n)�2� (n+ 1)�

24� (n)� � (n+ 1)� Y
j stgij=1

(1� � (n+ 1))
�
x (n) (1� � (n))2 � x (n+ 1) (1� � (n+ 1))

�35
We must prove now that when n = 1, this expression is negative. That is, we must

prove that:

�� (2) + (1� � (2))N�2
�
(� (1)� � (N)) (1� � (1))2 � (� (2)� � (N)) (1� � (2))

�
< 0

For that, let us verify that the sign of bracket expression is also negative. First of all,

let us observe that
�
(1� � (2))� (1� � (1))2

�
> 0. Therefore,

� (N)
�
(1� � (2))� (1� � (1))2

�
< � (2)

�
(1� � (2))� (1� � (1))2

�
< � (2) (1� � (2))�� (1) (1� � (1))2

Consequently, n� must be greater than 1 and the complete network will never be stable.

When the industry is "su¢ ciently" large, the empty network emerge as a pair-wise

stable network.

Proof Proposition 11 N �n� = m�. We interpret m� as the minimal number of

agreement that a �rm has to have in order to form an additional one Therefore, when

N � n� = 1 any two �rm has incentive to form an additional agreement. However, if

N � n� > 1 any two �rms need to have more than one agreement in order to make

pro�table to form an additional link.

Proof Proposition 12 Assume n1 < n2. As the number of agreements increases,

a �rm balances the pros and cons whether to maintain or cut its agreements. Namely, if

a �rm maintains its agreements, its bene�ts are x (n) (1� � (n))n+1. If a �rm destroys

its agreements, it gains (N � n)� (n+ 1).
Consequently, if x(n1)

x(n2)
� 1 < (1��(n2))n2+1

(1��(n1))n1+1
� 1, a �rm in large component has less

incentives to maintain all its agreements than a �rm that belongs to a smaller one,

since x (n1) (1� � (n1))n1+1 < x (n2) (1� � (n2))n2+1.
On the other hand, a �rm in a large component has more incentives to cut all its
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agreements at once than a �rm that belong to a smaller one, inasmuch as (N � n1)� (n1 + 1) >
(N � n2)� (n2 + 1) given convexity assumption.
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