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Supermodularity and supermodular games 
Xavier Vives 

 

The concept of complementarity is well established in economics at least since 

Edgeworth. The basic idea of complementarity is that the marginal value of an action is 

increasing in the level of other actions available. The mathematical concept of 

supermodularity formalizes the idea of complementarity. The theory of monotone 

comparative statics and supermodular games provides the toolbox to deal with 

complementarities. This theory, developed by Topkis (1978, 1979), Vives (1985, 1990) 

and Milgrom and Roberts (1990a), in contrast to classical convex analysis, is based on 

order and monotonicity properties on lattices. See Topkis (1998), Vives (1999), and 

Vives (2005) for detailed accounts of the theory and applications. Monotone comparative 

statics analysis provides conditions under which optimal solutions to optimization 

problems change monotonically with a parameter. The theory of supermodular games 

exploits order properties to ensure that the best response of a player to the actions of 

rivals is increasing in their level. Indeed, this is the characteristic of games of strategic 

complementarities (the term was coined in Bulow et al. (1983)). The power of the 

approach is that it clarifies the drivers of comparative statics results and the need of 

regularity conditions; it allows very general strategy spaces, including indivisibilities and 

functional spaces such as those arising in dynamic or Bayesian games; it establishes the 

existence of equilibrium in pure strategies (without requiring quasiconcavity of payoffs, 

smoothness assumptions, or interior solutions); it allows a global analysis of the 

equilibrium set when there are multiple equilibria, which has an order structure with 

largest and smallest elements; and, finally, it finds that those extremal equilibria have 

strong stability properties and there is an algorithm to compute them. 

 

We will provide first an introduction to the approach and some definitions; move on to 

the basic monotone comparative statics results; and provide the basic results for 

supermodular games. 
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Preliminaries and definitions. A binary relation ≥  on a nonempty set X is a partial order 

if ≥  is reflexive, transitive, and antisymmetric (a binary relation is antisymmetric if x ≥ y 

and y ≥ x implies that x = y). A partially ordered set (S , ≥ ) is completely ordered if for x 

and y in S either x ≥ y or y ≥ x. An upper bound on a subset A X⊂  is z X∈  such that 

z x≥  for all x A∈ . A greatest element of A is an element of A that is also an upper 

bound on A. Lower bounds and least elements are defined analogously. The greatest and 

least elements of A, when they exist, are denoted max A and min A, respectively. A 

supremum (resp., infimum) of A is a least upper bound (resp., greatest lower bound); it is 

denoted sup A (resp., inf A). A lattice is a partially ordered set (X, )≥  in which any two 

elements have a supremum and an infimum. Any interval of the real line with the usual 

order is a lattice since any two points have a supremum and an infimum in the interval. 

However, the set in 2  {(1,0),(0,1)} is not a lattice with the vector ordering (the usual 

component-wise ordering), since (1,0) and (0,1) have no joint upper bound in the set. 

However, if we add the points (0,0) and (1,1) the set becomes a lattice with the vector 

ordering (see Figure 1 and let x = (0,1) and y = (1,0)). A lattice (X, )≥  is complete if 

every nonempty subset has a supremum and an infimum. Any compact interval of the 

real line with the usual order, or product of compact intervals with the vector order, is a 

complete lattice. Open intervals are lattices but they are not complete (e.g. the supremum 

of the interval (a, b) does not belong to (a, b)). A subset L  of the lattice X is a sublattice 

of X if the supremum and infimum of any two elements of L  belong also to L . A lattice 

is always a sublattice of itself, but a lattice need not be a sublattice of a larger lattice. Let 

(X, )≥  and (T, )≥  be partially ordered sets. A function f : X T→  is increasing if, for x, y  

in X, x y≥  implies that f (x) f (y)≥ . 

 

Supermodular functions. A function g : X →  on a lattice X  is supermodular if, for all 

x, y  in X, g(inf(x,y)) g(sup(x,y)) g(x) g(y)+ ≥ + . It is strictly supermodular if the 

inequality is strict for all pairs x, y  in X  that neither x y≥  nor y x≥  holds. A function f 

is (strictly) submodular if f−  is (strictly) supermodular; a function f  is (strictly) log-

supermodular if logf  is (strictly) supermodular. Let X  be a lattice and T  a partially 

ordered set. The function g : X T R× →  has (strictly) increasing differences in (x, t)  if 
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g(x , t) g(x, t)−′  is (strictly) increasing in t  for x x>′  or, equivalently, if g(x, t ) g(x, t)−′  

is (strictly) increasing in x  for t t>′ . Decreasing differences are defined analogously.  

 

Supermodularity is a stronger property than increasing differences: if T  is also a lattice 

and if g is (strictly) supermodular on X T× , then g has (strictly) increasing differences in 

(x, t) . However, the two concepts coincide on the product of completely ordered sets: in 

such case a function is supermodular if and only if it has increasing differences in any 

pair of variables. Both concepts formalize the idea of complementarity: increasing one 

variable raises the return to increase another variable. For example, the Leontieff utility 

function { }1 1 n nU(x) min a x ,..., a x=  with ia 0≥  for all i is supermodular on n . The 

complementarity idea can be made transparent by thinking of the rectangle in n  with 

vertices {min(x,y), y, max(x,y), x} and rewriting the definition of supermodularity as 

g(max(x,y)) - g(x) ≥ g(y) - g(min(x,y)). Consider, for example, points in 2  x = (x1, x2) 

and y = (y1, y2) with the usual order. Then going from min(x, y) = (x1, y2) to y, for given 

y2, increases the payoff less than going from x to max(x, y) = (y1, x2), for given x2 ≥ y2 

(See Figure 1). 

 

 
 

If X is a convex subset of n  and if g : X R→  is twice-continuously differentiable, then 

g  has increasing differences in i j(x ,x )  if and only if 2
i jg(x) / x x 0∂ ∂ ∂ ≥  for all x  and 

i j≠ . For decreasing differences (or submodularity) we would have 2
i jg(x) / x x 0≤∂ ∂ ∂ . 

This characterization has a direct counterpart with the concept of (weak) cost 

 x1 y1 

y2 

x2 
x max(x,y) 

y min(x,y) 

Figure 1 
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complementarities if g is a cost function and x 0≥  the production vector. If 
2

i jg(x) / x x 0>∂ ∂ ∂  for all x and i ≠ j, then g is strictly supermodular. The differential 

characterization of supermodularity can be motivated by the figure as before. As an 

example consider assortative matching when types x and y in [ ]0,1  produce f(x,y) when 

matched and nothing otherwise. If 2f / x y 0>∂ ∂ ∂  then in a core allocation matching is 

positively assortative, that is, matched partners are identical (Becker (1973), see Shimer 

and Smith (2000) for a dynamic model with search where it is required also that 

flog / x∂ ∂  and 2flog / x y∂ ∂ ∂  are supermodular).  

 

Positive linear combinations and pointwise limits preserve the complementarity 

properties (supermodularity/increasing differences) of a family of functions 

ng : X T× → . Supermodularity is also preserved under integration. This has important 

consequences for comparative statics under uncertainty and games of incomplete 

information (see Vives (1990) and Athey (2001)). Supermodularity is preserved as well 

under the maximization operation. Supermodularity is unrelated to convexity, concavity 

or returns to scale. Indeed, any real-valued function on a completely ordered set (say the 

reals) is both supermodular and submodular. This fact also makes clear that 

supermodularity in Euclidean spaces, in contrast to concavity or convexity, has no 

connection with continuity or differentiability properties. Note also that if g is a twice-

continuously differentiable function, supermodularity only puts restrictions on the cross 

partials of g while the other concepts impose restrictions also on the diagonal of the 

matrix of second derivatives. 

 

Monotone comparative statics. Let X be a compact rectangle in Euclidean space and let T 

be a partially ordered set. Let g : X T× →  be a function that (a) is supermodular and 

continuous on X for each t T∈  and (b) has increasing differences in (x, t) . Let 

x X g((t) arg max x, t)∈ϕ = . Then (Topkis (1978)): 

1)  (t)ϕ  is a non-empty compact sublattice for all t ; 
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2)  ϕ  is increasing in the sense that, for t t>′  and for x (t )∈ϕ′ ′  and x (t)∈ϕ , we have 

sup(x ,x) (t )′ ′∈ϕ  and inf(x ,x) (t)∈ϕ′ ; and 

3)  t sup (t)ϕ  and t inf (t)ϕ  are increasing selections of ϕ . 

Several remarks are in order: (i) The continuity requirement of g can be relaxed. In more 

general spaces the requirement is for X to be a complete lattice and for g to fulfill an 

appropriate order continuity property. (ii) If g has strictly increasing differences in ( )x, t , 

then all selections of ϕ  are increasing. (iii) If solutions are interior, and ig / x∂ ∂  is strictly 

increasing in t  for some i , then all selections of ϕ  are strictly increasing (Edlin and 

Shannon (1998)). (iv) Milgrom and Shanon (1994) relax the complementarity conditions 

to ordinal complementarity conditions (quasisupermodularity and a single crossing 

property), and develop necessary and sufficient conditions for monotone comparative 

statics. 

Let us illustrate the result when T ⊂  and g is twice-continuously differentiable on 

X T× . Suppose first that X ⊂ , g is strictly quasiconcave in x (with g / x∂ ∂ = 0 implying 

that 2 2g /( x)∂ ∂  < 0), and that the solution to the maximization problem (t)ϕ is interior. 

Then, using the implicit function theorem on the interior solution, for which 

( )g (t), t / x 0∂ ϕ ∂ = , we obtain that ϕ  is continuously differentiable and 'ϕ = -
2g

x t
∂
∂ ∂

/
2

2

g
( x)
∂
∂

. 

Obviously, sign 'ϕ  = sign
2g

x t
∂
∂ ∂

. The solution is increasing (decreasing) in t if there are 

increasing,
2g

x t
∂
∂ ∂

 ≥ 0, (decreasing, 
2g

x t
∂
∂ ∂

 ≤ 0) differences. The monotone comparative 

statics result asserts that the solution (t)ϕ  will be monotone increasing in t even if g is 

not strictly quasiconcave in x, in which case (t)ϕ need not be a singleton or convex-

valued, provided that 
2g

x t
∂
∂ ∂

 does not change sign. For example, consider a single-product 

monopolist with revenue function R(x) and cost function C(x, t), where x is the output of 

the firm and t a cost efficiency parameter. We have therefore, g(x, t) = R(x) - C(x, t). If 

( )C ⋅  is smooth and
2C
x t

0∂
∂ ∂

≤ , an increase in t reduces marginal costs. Then if ( )R ⋅  is 
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continuous the comparative static result applies, and the largest (t)ϕ and the smallest (t)ϕ  

monopoly outputs are increasing in t. If 
2C
x t

0∂
∂ ∂

< , then all selections of the set of 

monopoly outputs are increasing in t. It is worth noting that the comparative statics result 

is obtained with no concavity assumption on the profit of the firm.  

 

Suppose now that kX ⊂ . If g is strictly concave in x (with the Jacobian of 
1 k

g g,...,
x x

⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

 

with respect to x, Hx, negative definite) and the solution to the optimization problem 

( )1 k(t) (t),..., (t)ϕ = ϕ ϕ  is interior, then (t)ϕ is continuously differentiable, and 

2 2
11 k

x
1 k

g g,..., H ,...,
t t x t x t

− ⎛ ⎞∂ϕ ∂ϕ ∂ ∂⎛ ⎞ = − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
. If the off-diagonal elements of Hx are 

nonnegative
2

i j

g
x x

0, j i∂
∂ ∂

≥ ≠ , then all the elements of 1
xH−−  are nonnegative and the 

diagonal elements are positive (McKenzie (1959)). A sufficient condition for i

t
0∂ϕ

∂
≥  for 

all i is that 
2

i

g
x t

0∂
∂ ∂

≥  for all i (the statement also holds with strict inequalities). As before, 

even if Hx is not negative definite, the assumptions that 
2

i j

g
x x

0, j i∂
∂ ∂

≥ ≠ , and that 
2

i

g
x t

0∂
∂ ∂

≥  

imply that the solution set (t)ϕ  has the monotonicity properties stated in the monotone 

comparative statics result. Note that when X is multidimensional, the restriction that g be 

supermodular on X, ensuring that for any components i and j an increase in the variable 

jx  raises the marginal return of variable ix , when coupled with increasing differences on 

X T×  is needed to guarantee the monotonicity of the solution For example, consider a 

multiproduct monopolist. If the revenue function ( )R ⋅  is continuous and supermodular 

on X, the cost function ( )C ⋅  continuous and submodular on X, and ( )C ⋅  displays 

decreasing differences in (x, t), the comparative static result follows. That is, the largest 

(t)ϕ and the smallest (t)ϕ  monopoly output vectors are increasing in t. In the 

differentiable case, 
2

i j

R
x x

0∂
∂ ∂

≥  and 
2

i j

C
x x

0∂
∂ ∂

≤ , for all i ≠ j, and 
2

i

C
x t

0∂
∂ ∂

≤  for all i. The 
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result hinges on revenue and cost complementarities among outputs, and the impact of the 

efficiency parameter on marginal costs, and not concavity of profits.  

 

Consider a team problem. Suppose that n persons share a common objective 

1 ng(x ,..., x , t) where the action of player i ix is in the rectangle ik
iX ⊂ for each i and t 

is a payoff relevant parameter. If g is supermodular on n
ii 1

X X
=

= ∏  and has strictly 

increasing differences in (x, t), then any optimal solution is increasing in the level of the 

parameter. For example, the optimal production g(x, t) of the firm (seen as a team 

problem) is increasing in the level of information technology t (that raises the marginal 

productivity of any worker of the firm).  

 

Supermodular games. Consider the game (Ai, πi; i∈N) where for each i = 1, …, n in the 

set of players N, Ai is the strategy set, a subset of Euclidean space, and πi the payoff of 

the player (defined on the cross product of the strategy spaces of the players A). Let ai∈  

Ai and a-i∈  j i≠Π Aj (i.e. denote by a-i the strategy profile (a1, …, an) except the ith 

element). The strategy profiles are endowed with the usual component-wise order. We 

will say that the game (Ai, πi; i∈ N) is (strictly) supermodular if for each i, Ai is a 

compact rectangle of Euclidean space, πi is continuous and (i) supermodular in ai for 

fixed a-i and (ii) displays (strictly) increasing differences in (ai, a-i). We will say that the 

game (Ai, πi; i∈N) is smooth (strictly) supermodular if furthermore πi (ai, a-i) is twice 

continuously differentiable with (i) ∂2πi/∂aih∂aik ≥ 0 for all k ≠ h, and (ii) ∂2πi/∂aih∂ajk ≥(>) 

0 for all j ≠ i and for all h and k, where aih denotes the hth component of the strategy ai of 

player i. Condition (i) is the strategic complementarity property in own strategies ai. 

Condition (ii) is the strategic complementarity property in rivals' strategies a-i .  

 

In a more general formulation strategy spaces need only be complete lattices and this 

includes functional spaces such as those arising in dynamic or incomplete information 

games. The complementarity conditions can be weakened to define an “ordinal 

supermodular” game (see Milgrom and Shannon (1994)). Furthermore, the application of 
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the theory can be extended by considering increasing transformations of the payoff 

(which do not change the equilibrium set of the game). For example, we will say that the 

game is log-supermodular if πi is nonnegative and log πi fulfils conditions (i) and (ii). 

This is the case of a Bertrand oligopoly with differentiated substitutable products, where 

each firm produces a different variety and marginal costs are constant, whenever the 

own-price elasticity of demand for firm i is decreasing in the prices of rivals, as with 

constant elasticity, logit, or constant expenditure demand systems. 

 

In the duopoly case (n = 2) the case of strategic substitutability can also be covered. 

Indeed, suppose that there is strategic complementarity or supermodularity, in own 

strategies (∂2πi /∂aih∂aik ≥ 0 for all k ≠ h, in the smooth version) and strategic 

substitutability in rivals' strategies or decreasing differences in (ai, a-i) (∂2πi /∂aih∂ajk ≤ 0 

for all j ≠ i and for all h and k, in the smooth version). Then the game obtained by 

reversing the order in the strategy space of one of the players, say player 2, is 

supermodular (Vives (1990)). Cournot competition with substitutable products displays 

typically strategic substitutability between the (output) strategies of the firms. 

 

In a supermodular game best responses are monotone increasing even when πi is not 

quasiconcave in ai. Indeed, in a supermodular game each player has a largest, iΨ (a-i) = 

sup Ψ i(a-i), and a smallest, iΨ (a-i) = inf Ψ i(a-i), best reply, and they are increasing in the 

strategies of the other players. Let 1 n( ,..., )Ψ = Ψ Ψ  and )...,,( n1 ΨΨ=Ψ  denote the extremal 

best reply maps.  
 

Result 1. In a supermodular game there always exist a largest a  = sup {a ∈ A: Ψ (a) ≥ a } 

and a smallest a  = inf {a ∈ A: Ψ (a) ≤ a } equilibrium. (Topkis (1979).) 

 

The result is shown applying Tarski's fixed point theorem to the extremal selections of 

the best-reply map, Ψ  and Ψ , which are monotone because of the strategic 

complementarity assumptions. Tarski’s theorem (1955) states that if A is a complete 
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lattice (e.g. a compact rectangle in Euclidean space) and f : A A→  an increasing 

function then f has a largest { }sup a A : f (a) a∈ ≥  and a smallest { }inf a A : a f (a)∈ ≥  

fixed point. There is no reliance on quasiconcave payoffs and convex strategy sets to 

deliver convex-valued best replies as required when showing existence using Kakutani’s 

fixed point theorem. The equilibrium set can be shown also to be a complete lattice 

(Vives (1990), Zhou (1994)).The result proves useful in a variety of circumstances to get 

around the existence problem highlighted by Roberts and Sonnenschein (1976). This is 

the case, for example, of the (log–)supermodular Bertrand oligopoly with differentiated 

substitutable products.  

 

Result 2. In a symmetric supermodular game (i.e. a game with payoffs and strategy sets 

exchangeable against permutations of the players) the extremal equilibria a  and a  are 

symmetric and, if strategy spaces are completely ordered and the game is strictly 

supermodular, then only symmetric equilibria exist. (See Vives (1999).) 

 

The result is useful to show uniqueness since if there is a unique symmetric equilibrium 

then the equilibrium is unique. For example, in a symmetric version of the Bertrand 

oligopoly model with constant elasticity of demand and constant marginal costs, it is easy 

to check that there exists a unique symmetric equilibrium. Since the game is (strictly) 

log-supermodular, we can conclude that the equilibrium is unique. The existence result of 

symmetric equilibria is related to the classical results of McManus (1962, 1964) and 

Roberts and Sonnenschein (1976). 

 

Result 3. In a supermodular game if there are positive spillovers (i.e. the payoff to a 

player is increasing in the strategies of the other players) then the largest (smallest) 

equilibrium point is the Pareto best (worst) equilibrium. (Milgrom and Roberts (1990a), 

Vives (1990).) 

 

Indeed, in many games with strategic complementarities equilibria can be Pareto ranked. 

In the Bertrand oligopoly example the equilibrium with higher prices is Pareto dominant 



 10

for the firms. This has proved particularly useful in applications in macroeconomics (e.g. 

Cooper and John (1988)) and finance (e.g. Diamond and Dybvig (1983)). 

 

Result 4. In a supermodular game: 

(i) Best-reply dynamics approach the interval [ a , a ] defined by the smallest and the 

largest equilibrium points of the game. Therefore, if the equilibrium is unique it is 

globally stable. Starting at any point A+ ( A− ) in the intersection of the upper 

(lower) contour sets of the largest (smallest) best replies of the players, best-reply 

dynamics lead monotonically downwards (upwards) to an equilibrium (Vives 

(1990, 1999)). This provides an iterative procedure to find the largest (smallest) 

equilibrium (Topkis (1979) starting at sup A (inf A). (See Figure 2.) 

(ii) The extremal equilibria correspond to the largest and smallest serially 

undominated strategies (Milgrom and Roberts (1990a)). Therefore, if the 

equilibrium is unique, the game is dominance solvable. Rationalizable (Bernheim 

(1984), Pearce (1984)) or mixed strategy outcomes must lie in the interval [ a , a ].  

 

Figure 2 

Best reply dynamics in a supermodular game 

A +

A + 

A − 

A −

a 1

a 2 
a

a 

(with best reply functions             r1 , r2 )

r 1 ( ⋅ ) 

r 2 ( ⋅ ) 

(⋅ ) (⋅ )
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In the Bertrand oligopoly example with linear, constant elasticity, or logit demands, the 

equilibrium is unique and therefore it is globally stable, and the game is dominance 

solvable. In the team example it is clear that an optimal solution will be a Nash 

equilibrium of the game among team members. If the equilibrium is unique then best 

reply dynamics among team members will converge to the optimal solution. This need 

not be the case if there are multiple equilibria. (See Milgrom and Roberts (1990b) for an 

application to the theory of the firm.) 

 

Result 5. Consider a supermodular game with parameterized payoffs πi (ai, a-i; t) with t in 

a partially ordered set T. If πi (ai, a-i; t) has increasing differences in (ai, t) (in the smooth 

version ∂2πi /∂aih∂t ≥ 0 for all h and i), then the largest and smallest equilibrium points 

increase with an increase in t, and starting from any equilibrium, best reply dynamics lead 

to a (weakly) larger equilibrium following the parameter change. The latter result can be 

extended to adaptive dynamics, which include fictitious play and gradient dynamics. (See 

Lippman et al. (1987), and Sobel (1988) for early results; and Milgrom and Roberts 

(1990a), Milgrom and Shannon (1994), and Vives (1999) for extensions.)  It is worth 

noting that continuous equilibrium selections that do not increase monotonically with t 

predict unstable equilibria (Echenique (2002)). The result yields immediately that an 

increase in an excise tax in a (log-)supermodular Bertrand oligopoly raises prices at an 

extremal equilibrium.  

 

The basic intuition for the comparative statics result is that an increase in the parameter 

increases the actions for one player, for given actions or rivals, and this reinforces the 

desire of all other players to increase their actions because of strategic complementarity. 

This initiates a mutually reinforcing process that leads to larger equilibrium actions. This 

is a typical positive feedback in games of strategic complementarities. In this class of 

games, unambiguous monotone comparative statics obtain if we concentrate on stable 

equilibria. We can understand this as a multidimensional version of Samuelson’s (1947) 

Correspondence Principle, which was obtained with standard calculus methods applied to 

interior and stable one-dimensional models.  
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A patent race. Consider n firms engaged in a memoryless patent race that have access to 

the same R&D technology. The winner of the patent obtains the prize V  and losers 

obtain nothing. The (instantaneous) probability of innovating is given by ( )h x if a firm 

spends x  continuously, where h  is a smooth function with ( )h 0 0,= h 0′ > , 

( )xlim h x 0→∞ ′ = , and ( )h 0′ = ∞ . It is assumed also that h is concave but a region of 

increasing returns for small x  may be allowed. If no patent is obtained the (normalized) 

profit of a firm is zero. The expected discounted profits (at rate r ) of firm i  investing ix  

if rival j i≠  invests jx  is given by  

( )
( ) ( )

i i
i

i j i j

h x V x
h x h x r≠

−
π =

+ Σ +
. 

Lee and Wilde (1980) restrict attention to symmetric Nash equilibria of the game and 

show that, under a uniqueness and stability condition at a symmetric equilibrium x∗  

expenditure intensity increases with n . The classical approach requires assumptions to 

ensure a unique and stable symmetric equilibrium and cannot rule out the existence of 

asymmetric equilibria. Suppose that there are potentially multiple symmetric equilibria 

and that going from n to n+1 new equilibria appear. What comparative static result can 

we infer then? Using the lattice approach we obtain a more general comparative statics 

result that allows for the presence of multiple symmetric equilibria (Vives (1999, 

Exercise 2.20, and 2005, Section 5.2). Let ( )h 0 0=  with h  strictly increasing in 0, x⎡ ⎤⎣ ⎦ ,  

with ( )h x V x 0− <  for x x 0.≥ >  Under the assumptions the game is strictly log-

supermodular and from Result 2 only symmetric equilibria exist. Let ix x=  and jx y=  

for j i≠ . Then ilog π  has (strictly) increasing differences in (x,n)  for all y  (y 0),>  

and, according to Result 5, the expenditure intensity x∗  at extremal equilibria is 

increasing in n. Furthermore, starting at any equilibrium, an increase in n  will raise 

research expenditure with out-of-equilibrium adjustment according to best-reply 

dynamics. This will be so even if new equilibria appear, or some disappear, as a result of 
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increasing n.  Finally, if h  is smooth with h 0′ >  and ( )h 0′ = ∞ , then i ilog / x∂ π ∂  is 

strictly increasing in n  and (at extremal equilibria) x∗  is strictly increasing in n . This 

follows because, under our assumptions, equilibria are interior and must fulfill the first-

order conditions.  

The results can be applied to dynamic and incomplete information games, which have 

complex strategy spaces. For example, in an incomplete information game, if for given 

types of players the ex post game is supermodular, then the Bayesian game is also 

supermodular and therefore there exist Bayesian equilibria in pure strategies (Vives 

(1990)). If, furthermore, payoffs to any player have increasing differences between the 

actions of the player and types, and higher types believe that other players are also of a 

higher type (according to first-order stochastic dominance), then extremal equilibria of 

the Bayesian game are monotone increasing in types (Van Zandt and Vives (2006)). This 

defines a class of monotone supermodular games. An example is provided by global 

games (introduced by Carlsson and Van Damme (1993) and developed by Morris and 

Shin (2002) and others with the aim of equilibrium selection. Global games are games of 

incomplete information with type space determined by each player observing a noisy 

private signal of the underlying state. The result is obtained applying iterated elimination 

of strictly dominated strategies. From the perspective of monotone supermodular games 

we know that extremal equilibria are the outcome of iterated elimination of strictly 

dominated strategies, that they are monotone in type (and therefore in binary action 

games there is no loss of generality in restricting attention to threshold strategies), and the 

conditions put to pin down a unique equilibrium in the global game amount to a lessening 

of the strength of strategic complementarities (see Section 7.2 in Vives (2005)). 
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