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Abstract

We study price formation in a model of consumer search for differentiated products when
consumers have heterogeneous marginal search costs. We provide conditions under which
a symmetric Nash equilibrium exists and is unique. Search costs affect two margins—the
intensive search margin (or search intensity) and the extensive search margin (or the decision
to search rather than to not search at all). These two margins affect the elasticity of demand
in opposite directions and whether lower search costs result in higher or lower prices depends
on the properties of the search cost density. When the search cost density has the increasing
likelihood ratio property (ILRP), the effect of lowering search costs on the intensive search
margin has a dominating influence and prices decrease. By contrast, when the search cost
density has the decreasing likelihood ratio property (DLRP), the effect on the extensive
search margin is dominant and lower search costs result in higher prices. We compare these
results with those obtained when consumers have heterogeneous fixed search costs.
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1 Introduction

Throughout history, technological improvements have made it possible for consumers to par-

ticipate in markets that were previously beyond their reach. A recent example of such a tech-

nological development is the Internet. The introduction and sustained growth of e-commerce

has significantly lowered the transaction costs consumers experience while shopping. This has

not only made it easier for consumers to search for and compare products but it has also made

it easier for consumers to get access to new markets and hard-to-find products. This has also

led to the Internet’s Long Tail phenomenon: the Internet allows consumers to access a much

larger product selection, including niche products that were previously difficult to find, thereby

creating a long tail in the sales distribution (see, e.g., Brynjolfsson, Hu, and Simester, 2011).1

How are technological advances that make it easier for consumers to search expected to affect

market competitiveness? The conventional answer is that a reduction in search costs increases

the elasticity of demand and as such reduces prices. However, as illustrated by the example, this

is not the complete story. Lower search costs also allow consumers to search for products that

previously were not part of their consideration sets. Since these new consumers are likely to

have higher search costs (because otherwise they would have been actively searching before), this

leads to compositional changes in the consumer population that may potentially decrease the

elasticity of demand. More consumer participation as a result of a technology-driven reduction

in search costs may end up being the dominating factor, which means firms will raise prices,

even when search costs go down for all consumers.

Hortaçsu and Syverson (2004) present empirical evidence that is consistent with this par-

ticular mechanism in their study of the US mutual fund industry during the late nineties. Not

that long ago investors had to go through significant effort to search for adequate investment

opportunities while managing their financial investments. However, the rise of Internet banking

and online brokerages during the late nineties decreased transaction costs and made it easier for

individuals to search for new investment opportunities. Hortaçsu and Syverson (2004) find that

during this period investment fund fees went up and that search costs decreased at the lower

percentiles of the search cost distribution while increased at the upper percentiles. According

to the authors, this surprising finding (i.e., a second-order stochastic dominance decrease in

search costs leading to a price rise) is explained by the increase in the number of households

1The expansion of the railroad network in the United States in the 19th century and the liberalization of
airlines in the 20th century are events that also led to significantly lower transportation costs and greater market
integration. As with the Internet, lower transportation costs were not only beneficial to consumers because of
reduced transaction costs but also because they allowed consumers to be active in new markets.

2



that participated in the mutual fund market for the first time. These new investors arguably

had higher search costs and were less savvy. Hortaçsu and Syverson argue that the entry of

these new investors changed the composition of the investor population and made demand more

inelastic, explaining the increase in mutual fund fees.

The main objective of our paper is to understand under which conditions a mechanism like the

one described above occurs. In particular, our goal is to derive general conditions under which a

first- or second-order stochastic dominance decrease in search costs triggers sufficient consumer

entry such that the elasticity of demand is lowered and equilibrium prices go up. In order to

do so, we develop a model of consumer search for differentiated products in which consumers

have heterogeneous search costs and the decision to participate in the market is endogenous.

Our model, which is presented in Section 2, builds on the seminal model of consumer search for

differentiated products introduced by Wolinsky (1986), and further studied by Anderson and

Renault (1999).2 We extend this model by allowing for arbitrary search cost densities. This

is crucial for studying the second-order stochastic dominance (SOSD) decreases in search costs

observed in the mutual fund industry by Hortaçsu and Syverson (2004).

Section 3 deals with marginal search cost heterogeneity and characterizes the symmetric Nash

equilibrium of the model. Our first contribution is the study of the existence and uniqueness

of a symmetric Nash equilibrium in pure strategies. Because a direct verification of the second

order conditions fails to deliver clear-cut results we proceed by studying the conditions under

which the profit function of a typical firm is quasi-concave. We show that when the density of

search costs is sufficiently log-concave, an equilibrium exists and is unique. In order to prove

our existence result we use an aggregation theorem due to Prékopa (1973) that shows that

integration preserves log-concavity (see also Caplin and Nalebuff, 1991, p.46).

Our second contribution is the study of the comparative statics effects of lower search costs.

In Section 4 we show that a change in search costs affects two margins, namely, the intensity

with which consumers search (which we call the intensive search margin) and the share of

consumers who choose to search for a good deal in the first place (which we refer to as the

extensive search margin). By assuming that all consumers search at least once, the literature

has typically focused on the effects of the intensive search margin on price determination and

2Arguably Wolinsky’s framework has become the workhorse model of consumer search for differentiated prod-
ucts. Recent work that builds on this article include Bar-Isaac, Caruana, and Cuñat (2012), who extend the
model to the case of quality-differentiated firms and study design differentiation, Armstrong, Vickers, and Zhou
(2009), who study search and pricing behavior in the presence of a prominent firm, Haan and Moraga-González
(2011a), who study the emergence and the price effects of prominence, Moraga-González and Petrikaitė (2013),
who examine the effect of search costs on mergers, and Zhou (2014), who studies multi-product search.
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has thereby neglected the role of the extensive search margin.3

Recognizing that prices do not only affect the intensive search margin but may also affect the

extensive search margin turns out to be critical for a complete understanding of the functioning

of consumer search markets. We show that if the extensive margin does not play a role, any

decrease in search costs in the sense of first-order stochastic dominance (FOSD) results in a

lower equilibrium price. This would happen when the range of search costs is sufficiently small

and all consumers choose to search in market equilibrium. Consumers, facing lower search costs,

all choose to search more and demand products that are more attractive. Firms, anticipating

that average demand becomes more elastic, respond by reducing their prices. Under certain

conditions on the density of match values (satisfied by for example the uniform distribution), a

decrease in search costs in the sense of second-order stochastic dominance (SOSD) also results

in lower prices.

If the extensive search margin does play a role, we get very different results. Specifically, we

show that a shock that reduces search costs leads to more search but also brings new consumers

into the market with relatively high search costs. We establish that for search cost densities

with the decreasing likelihood ratio property (DLRP), a decrease in search costs in the sense of

FOSD or SOSD results in a higher equilibrium price. That is, for densities with the DLRP a

decrease in search costs has a bigger effect on the extensive search margin than on the intensive

search margin, and as a result prices go up. This is exactly what seems to have occurred in

Hortaçsu and Syverson’s (2004) study of the mutual fund industry: easier search led to entry

of new consumers and this resulted in a more inelastic composition of demand so prices went

up in spite of the increasing popularity of Internet banking and online trading. For search cost

densities with the increasing likelihood ratio property (ILRP) we find the opposite: a decrease

in search costs leads to lower prices. For this type of densities the effect of a fall in search costs

on search intensity dominates the effect on demand composition.

We believe that this mechanism may also be important for understanding other existing em-

pirical evidence regarding the effects of the Internet on retail price competition. The commonly

held belief is that the Internet improves consumer search technology and this should naturally

lead to lower prices online than offline. Despite this belief, the empirical evidence is mixed: al-

though some studies indeed find lower prices online than offline (Brynjolfsson and Smith, 2000;

Scott Morton, Zettelmeyer, Silva-Risso, 2001), others find no effects or even the opposite (Clay,

3This point is also the central tenet in Anderson and Renault (2006), who, by allowing for arbitrary search
costs, are able to reconcile the empirical observation that much of the advertising we observe in arguably search
environments does impart only match information and not price information.
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Krishnan, and Wolff, 2001; Clemons, Hann, and Hitt, 2002; Goolsbee, 2001; Lee, 1998). The

entry of new buyers as a result of a reduction in transaction costs due to the Internet may very

well be part of the explanation for why some studies have found online prices to be higher than

offline prices.

A third contribution of our paper is more technical in nature and relates to the properties of

truncated densities. Specifically, as part of our proofs for our findings on the comparative statics

effects of lower search costs we show that for any two densities that can be ranked according

to the ILRP, the corresponding distributions truncated from above can be ranked according

to the FOSD criterion, irrespective of the location of the truncation point. Conversely, if the

densities can be ranked according to the DLRP, then the corresponding distributions truncated

from above can be ranked according to the reverse FOSD. To prove this result we use a tool

from the statistics literature by Ahlswede and Daykin (1978) that has also been used by for

instance Athey (2002), although for a different application.

Finally, in Section 5 we study what happens to prices when there is a change in the distri-

bution of fixed search costs rather than marginal search costs. We show that when consumers

differ in their fixed costs of search (but face a similar marginal cost of search) we obtain quite

different results because a decrease in the fixed costs of search results in an increase in demand

without altering the elasticity of demand. As a result, prices do not change. This illustrates

an important point: changes in the size of the market do not always lead to changes in de-

mand elasticity. The mechanism by which prices are affected by changes in the extensive search

margin goes via the changes in the gains from search of the average consumer who chooses to

search. Changes in the market that do not affect the gains from search of the average consumer

(as happens when fixed search costs vary while marginal search costs are fixed) do not have a

bearing on the elasticity of demand, which implies that prices do not change.

Related literature

Most of the previous literature has proceeded under the restrictive assumption that search costs

are required to be “low enough,” de facto implying that all consumers choose to search at least

once in equilibrium rather than to not search at all (e.g., Stahl, 1989; Burdett and Judd, 1983;

Wolinsky, 1986). As pointed out by Stiglitz (1979), the alternative assumption that search costs

are large may cause the market to collapse.4 As we have discussed before, this unravelling of

4For example, in the setting of Diamond (1971), the only price that can be part of a market equilibrium is the
monopoly price (the well-known “Diamond paradox”). If the search cost is relatively high, the surplus consumers
derive at the monopoly price may be insufficient to cover the cost of the first search, in which case consumers
rather do not search at all and the market fails to exist.
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the market will not arise when consumer search costs are heterogeneous. Two related papers

(Janssen, Moraga-González, and Wildenbeest, 2005; Rauh, 2004) also allow for endogenous

consumer participation, although in both papers the type of search cost heterogeneity that is

assumed is less general than in our model. Janssen, Moraga-González, and Wildenbeest (2005)

employ Stahl’s (1989) setting, with the much used “shoppers and non-shoppers” setup. They

show that when the extensive search margin plays a role, prices will always increase if the

search cost decreases. Our paper shows instead that prices can go both directions and provides

conditions under which one or the other occurs. This means that by not restricting the extent

of consumer heterogeneity in the market, our model may result in qualitatively very different

outcomes than a model that uses the standard shoppers and non-shoppers setup. Moreover, the

shoppers and non-shoppers setup does not allow for studying the comparative statics effects of

SOSD decreases in search costs, such as those that occurred in the US mutual fund industry. In

Rauh (2004) consumer participation is endogenous and proves to be important for the welfare

analysis of price ceilings; however, he assumes search costs are uniformly distributed and does

not examine the comparative statics effects of higher search costs.

A few recent papers have put forward situations in which lower search costs do not necessarily

lead to lower prices, although these findings rely on very different mechanisms. For instance,

Chen and Zhang (2011) enrich Stahl’s (1989) setting by adding loyal consumers, and show that

in such an environment a reduction in the search cost sometimes leads to higher equilibrium

prices. In a different framework where search is price-directed, Armstrong and Zhou (2011)

show that lower search costs lead to higher prices. A similar result is obtained in Haan and

Moraga-González (2011b), who extend the Anderson and Renault (1999) model by making

prices observable before search. In a model in which consumers search for various products from

multi-product firms, Zhou (2014) demonstrates that product externalities can lead firms to raise

their prices when search costs go down. Lastly, in a model with vertical relations, Janssen and

Shelegia (2015) encounter situations where retail prices increase as search costs decrease.

Finally, our paper relates to the recent literature on obfuscation, which points out that

firms have incentives to obfuscate their products by raising the costs consumers have to incur

to inspect their offers (Ellison and Wolitzky, 2012; Wilson, 2010). Our result tells that under

certain conditions firms may benefit from doing exactly the opposite, that is, by lowering search

costs.
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2 Sequential search for differentiated products

Our model builds on the seminal contribution of Wolinsky (1986); specifically we examine a

competitive version of his model and we allow consumers to have heterogeneous search costs.5

Consider a market with infinitely many consumers and firms and, without loss of generality, nor-

malize the number of consumers per firm to 1. Firms produce horizontally differentiated products

using the same constant returns to scale technology of production; let r be the marginal cost of

the firms. Aiming at maximizing their expected profits, firms choose their prices simultaneously.

We focus on symmetric Nash equilibria (SNE); let p∗ denote an SNE price.

A consumer ` has tastes for a product i described by the following indirect utility function:

ui` =

{
εi` − pi if she buys product i at price pi;

0 otherwise.

The parameter εi` is a match value between consumer ` and product i. We assume that the

match value εi` is the realization of a random variable distributed on the interval [0, ε] according

to a cumulative distribution function (CDF) denoted by F . Let f be the probability density

function (PDF) of F . We assume that f is differentiable and that 1− F is log-concave. Match

values εi` are independently distributed across consumers and products. Moreover, they are

private information of consumers so personalized pricing is not possible. Consumers search

sequentially in order to maximize their expected utility. While searching, they have correct

beliefs about the equilibrium price. The total cost of search of a consumer ` who searches n

times is k` + nc`, where k` is the consumer’s fixed cost of search and c` indicates her marginal

cost of search.

In the following sections we examine the role of search cost heterogeneity in our model. We

start with the case in which consumers have heterogeneous marginal search costs. In Section 5

we study what happens when consumers have heterogeneous fixed search costs.

5In the Appendix we present numerical results showing that the main insights of our paper also hold when the
number of firms is finite. With a finite number of firms, however, proving existence and uniqueness of equilibrium
is a challenge because the demand of a typical firm consists of a sum of two non-necessarily quasi-concave functions
of its own price (see Anderson and Renault, 1999).
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3 Marginal search cost heterogeneity

Assume that consumers differ in their marginal costs of search.6 Specifically, assume that a buyer

`’s marginal search cost c` is drawn independently from a differentiable cumulative distribution

function G with support [c, c]. Let g be the density of G. We refer to the difference between the

upper and lower bound of the search cost distribution as the range of search costs. We require the

lower bound of the search cost distribution to be sufficiently low because otherwise no consumer

would search and the market would collapse. In this section, we assume that consumers do not

need to incur any fixed cost of search; the role of fixed search costs is relegated to Section 5.

Existence and uniqueness of an SNE price

We now characterize the SNE price. In order to do so, we derive the payoff of a firm, say i, that

deviates from the SNE price p∗ by charging a price pi 6= p∗. Next, we compute the first order

condition (FOC), apply the symmetry condition pi = p∗, and study the existence and uniqueness

of the SNE. For later use, we define the monopoly price as pm = arg maxp(p− r)(1− F (p)).

Consider the (expected) payoff to a firm i that deviates from the equilibrium by charging

a price pi. In order to compute firm i’s demand, we first need to characterize consumer search

behavior. Since consumers do not observe deviations before searching, we can rely on Kohn and

Shavell (1974), who study the search problem of a consumer who faces a set of independently

and identically distributed options with a known distribution. Kohn and Shavell show that

the optimal search rule is static in nature and has the stationary reservation utility property.

Accordingly, consider a consumer with search cost c and denote the solution to

h(x) ≡
ˆ ε

x
(ε− x)f(ε)dε = c (1)

in x by x̂(c). The left-hand-side (LHS) of equation (1) is the expected benefit in symmetric

equilibrium from searching one more time for a consumer whose best option so far is x. Its right-

hand-side (RHS) is the consumer’s cost of search. Hence x̂(c) represents the threshold match

value above which a consumer with search cost c will optimally decide not to continue searching

for another product. The function h is monotonically decreasing. Moreover, h(0) = E[ε] and

h(ε) = 0. It is readily seen that for any c ∈ [c,min{c, E[ε]}], there exists a unique x̂(c) that

6Most models in the literature abstract from consumer search cost heterogeneity or only allow for special
forms of heterogeneity, typically with some consumers having a search cost equal to zero (usually referred to as
the “shoppers”), while the rest faces a positive and identical search cost (the “non-shoppers”). There are some
exceptions to this in the literature (e.g., Bénabou, 1993; Rob, 1985; Rauh, 2009; Stahl, 1996; Tappata, 2009) but
in these papers search costs are assumed to be sufficiently low so that all consumers search at least once. We will
later show that this assumption is restrictive.
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solves equation (1). Differentiating equation (1) successively, we obtain

x̂′(c) = − 1

1− F (x̂(c))
< 0;

x̂′′(c) =
f(x̂(c)) [x̂′(c)]2

1− F (x̂(c))
> 0,

which implies that x̂(c) is a decreasing and convex function of c on [c,min{c, E[ε]}], with

x̂(E[ε]) = 0 and x̂(c) ≤ ε.7

In order to compute firm i’s demand, consider a consumer with search cost c who shows up

at firm i to inspect its product after possibly having inspected other products. Let εi−pi denote

the utility the consumer derives from firm i’s product. Obviously, if alternative i is not the best

one so far, the consumer will discard it and search again. Therefore, only when the deal offered

by firm i happens to be the best so far, the consumer will consider to stop searching and buy the

product right away. For this decision, the consumer compares the gains from an additional search

with the costs of such a search. In this comparison, the consumer holds correct expectations

about the equilibrium price so she expects the other firms to charge p∗. The expected gains from

searching one more firm, say firm j, are equal to
´ ε
εi−pi+p∗ [εj−(εi−pi+p∗)]f(εj)dεj . Comparing

this to equation (1), it follows that, conditional on having arrived at firm i, the probability that

buyer c stops searching at firm i is equal to Pr[εi− pi > x̂(c)− p∗] = 1−F (x̂(c) + pi− p∗). With

the remaining probability, the consumer finds the product of firm i not sufficiently satisfactory

and continues searching; with infinitely many firms, such a consumer will surely buy at another

firm. Because a consumer with search cost c may visit firm i after having visited no, one, two,

three, etc. other firms, the unconditional probability she stops searching and buys at firm i is

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

. (2)

To obtain the payoff of firm i we need to integrate expression (2) over the consumers who

decide to search the market for a satisfactory product; in other words, we need to integrate

over those consumers who derive expected positive surplus from participation. To compute the

surplus a consumer with search cost c obtains from participation, we note that she will stop and

buy at the first firm she visits whenever the match value she derives at that firm is greater than

x̂(c); otherwise she will drop the first option and continue searching. In the latter case she will

encounter herself exactly in the same situation as before because, conditional on participating,

she will continue searching until she finds a product satisfactory enough to buy it and leave the

7Consumers with search cost c > E[ε], if any, will automatically drop from the market and can therefore be
ignored right away. Therefore x̂(c) is well-defined for every consumer that matters for pricing.
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market. Denoting by CS(c) her consumer surplus, we have that:8

CS(c) = x̂(c)− p∗.

Setting this surplus equal to zero, and using equation (1), we obtain the critical search cost

value above which consumers will refrain from participating in the market:

c̃(p∗) =

ˆ ε

p∗
(ε− p∗)f(ε)dε. (3)

Depending on how large the range of search costs is, more or less consumers will choose to

search the market for a satisfactory deal. Correspondingly, we define

c0(p
∗) ≡ min{c, c̃(p∗)}.

We refer to the decision to search as the extensive search margin. Because c̃(p∗) is decreasing in

p∗, if consumers expect a higher equilibrium price then fewer of them will choose to search the

market for an acceptable product.9

The payoff to the deviant firm i is then:

π(pi; p
∗) = (pi − r)D(pi, p

∗), (4)

where the demand firm i receives D(pi, p
∗) is

D(pi, p
∗) =


ˆ c0(p∗)

c

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

g(c)dc if pi < p∗,

ˆ c0(p∗)

max{c,ĉ(pi)}

1− F (x̂ (c) + pi − p∗)
1− F (x̂ (c))

g (c) dc if pi ≥ p∗,
(5)

where ĉ (pi) is the solution of the equation x̂ (c) + pi − p∗ = ε in c.

The FOC is given by (for pi < p∗):

ˆ c0(p∗)

c

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

g(c)dc− (pi − r)
ˆ c0(p∗)

c

f(x̂(c) + pi − p∗)
1− F (x̂(c))

g(c)dc = 0.

Applying symmetry, i.e., pi = p∗, we can rewrite the FOC as:10

p∗ = r +
G(c0(p

∗))´ c0(p∗)
c

f(x̂(c))
1−F (x̂(c))g(c)dc

. (6)

8For a formal derivation of this expression, see the Appendix.
9The standard assumption in the search cost literature has been that c0(p∗) = c, which implies that all

consumers search at least once. This kind of fully-covered market assumption (in the sense that all consumers
search) is clearly restrictive and, as we will show later, it can lead to wrong conclusions about the effects of higher
search costs on equilibrium prices.

10Note that the first-order necessary condition for a symmetric equilibrium is the same when we assume that
the deviating price p ≥ p∗.
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We now show that a candidate symmetric equilibrium price exists and is unique. First

consider the case in which search costs are sufficiently low, i.e. c < c̃(p∗), hence G(c0(p
∗)) = 1.

In terms of exogenous parameters, this occurs under the following restriction:

Condition 1.

c ≤
ˆ ε

r+ 1´ c
c

f(x̂(c))
1−F (x̂(c))

g(c)dc

ε− r − 1´ c
c

f(x̂(c))
1−F (x̂(c))g(c)dc

 f(ε)dε.

Because under Condition 1 c0(p
∗) = c, the expression (6) gives the candidate equilibrium

price explicitly. In this case, obviously, there exists a unique candidate equilibrium price.

When search costs are not restricted to be sufficiently small and Condition 1 is violated

then c > c̃(p∗) and correspondingly G(c0(p
∗)) < 1. In this case the equilibrium price is given

implicitly by the solution to equation (6). We now show that equation (6) has a unique solution

in this situation as well. For this we define the function

L(p) ≡ G(c̃(p))− (p− r)
ˆ c̃(p)

c

f(x̂(c))

1− F (x̂(c))
g (c) dc

for p ∈ [r, pm], where pm as before denotes the monopoly price. Note that

L (r) = G(c̃(r)) > 0.

Also observe that L(pm) can be written as

L (pm) =

ˆ c̃(pm)

c

1− F (x̂(c))− (pm − r)f(x̂(c))

1− F (x̂(c))
g (c) dc. (7)

The sign of this expression depends on the sign of the numerator of the fraction in the in-

tegrand. We now argue that L(pm) < 0 because 1 − F (x̂(c)) − (pm − r)f(x̂(c)) ≤ 0 for all

c ∈ [c, c̃(pm)]. In fact, note that by log-concavity of f , because x̂(c) decreases in c, it follows that

f(x̂(c))/ [1− F (x̂(c))] decreases in c, which implies that 1−F (x̂(c))− (pm− r)f(x̂(c)) increases

in c. Because x̂(c(p)) = p, if we set c = c̃(pm) in the expression 1 − F (x̂(c)) − (pm − r)f(x̂(c)),

we get the monopoly pricing rule 1 − F (pm) − (pm − r)f(pm) = 0. We can now conclude that

L (pm) < 0 because the expression 1−F (x̂(c))− (pm − r)f(x̂(c)) is increasing in c and takes on

value zero when we compute it at the upper bound of the integral.

Taken together, L (r) > 0 and L (pm) < 0 imply that a candidate equilibrium price p∗ ∈

[r, pm] exists. We finally note that

dL (p)

dp
= g (c̃ (p))

dc̃ (p)

dp
− (p− r) f (p) g (c̃ (p))

dc̃ (p)

dp
−
ˆ c̃(p)

c
f(x̂(c))g (c) dc

=
1− F (p)− (p− r) f (p)

1− F (p)
g (c̃ (p))

dc̃ (p)

dp
−
ˆ c̃(p)

c
f(x̂(c))g (c) dc (8)
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is negative for any p ∈ [r, pm], which implies that the candidate equilibrium price is unique. This

follows from the fact that 1−F (p)− (p− r) f (p) ≥ 0 (because it is the first order derivative of

the monopoly payoff (p− r) (1− F (p)), which is log-concave) and dc̃ (p) /dp < 0 (because, from

equation (3), c̃ is decreasing in p). In particular, at the candidate equilibrium price p∗ we must

have dL(p∗)/dp < 0.

Our next result provides conditions for existence of a symmetric equilibrium.

Theorem 1. There may be two types of SNE in the model of sequential search for differentiated

products with heterogeneous marginal costs of search:

(A) An SNE where all consumers conduct at least a first search, in which case Condition 1

holds so that c ≤ c̃(p∗). In this type of equilibrium firms charge a price given by expression (6)

after setting c0(p
∗) = c, and where x̂(c) solves equation (1).

(B) An SNE where only some of the consumers search for a satisfactory product, in which

case Condition 1 is violated so that c > c̃(p∗). In this type of equilibrium firms charge a price

given by expression (6) after setting c0(p
∗) =

´ ε
p∗(ε − p

∗)f(ε)dε; moreover, the fraction of con-

sumers G
(´ ε

p∗(ε− p
∗)f(ε)dε

)
conducts at least a first search while the rest of the consumers do

not search at all and leave the market.

Let x̂−1(t) denote the inverse function of x̂(c). When the function g(x̂−1(t)) is log-concave

in t, then the SNE exists and is unique.

The proof, whose details are in the Appendix, is as follows. Because a direct verification

of the second order conditions does not deliver clear-cut results, we proceed by showing that

the demand function of an individual firm is a log-concave function of its own price under the

assumption that g(x̂−1(t)) is log-concave in t. Once this is proven, we know that the firm profit

function (4) is quasi-concave in its own price so that the unique candidate equilibrium price

given by expression (6) is indeed an equilibrium. In order to prove that the demand function

of a firm is log-concave in the firm’s own price, we first show that the demand from a single

consumer is log-concave both in price and in consumer reservation values; after this we make

use of Theorem 6 in Prékopa (1973), which shows that integration over consumer reservation

values preserves log-concavity.

4 The comparative statics effects of lower search costs

We now proceed to study the impact of lower marginal search costs on the equilibrium prices

given by Theorem 1. In order to address this question, we parametrize the CDF of search
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costs by a positive parameter β that shifts the distribution. Specifically, let G(c;β) denote the

parametrized CDF of search costs; let g(c;β) denote the parametrized PDF of search costs with

support [c(β), c(β)].11

We study FOSD and SOSD decreases in search costs. Concretely, we say that search costs

decrease in the sense of FOSD whenever a decrease in β implies an increase in the search cost

distribution for all c, i.e., when ∂G(c;β)/∂β ≤ 0 for all c (and < 0 for some c). Alternatively,

we say that search costs decrease in the sense of SOSD whenever

ˆ c

c(β)

∂G(x;β)

∂β
dx ≤ 0 for all c (and < 0 for some c).

Note that SOSD is implied by FOSD (not vice-versa).

Let p∗(β) be the corresponding SNE price for a given β. In order to develop some intuition,

it is useful to recall that, as usual with monopolistic competition, we can write the equilibrium

price as:

p∗(β) =
r

1− 1
ε(p∗;β)

(9)

where

ε(p∗;β) ≡ −p
∗D′(p∗;β)

D(p∗;β)

represents the price elasticity of demand. We are interested in the behavior of p∗(β) with respect

to β.

4.1 Low search costs

Consider first the case of Theorem 1A. When the upper bound of the search cost distribution

is sufficiently low and all consumers search, a change in search costs only affects the intensive

search margin. The equilibrium price is equal to

p∗(β) = r +
1´ c(β)

c(β)
f(x̂(c))

1−F (x̂(c))g(c;β)dc
. (10)

Note that the denominator of the fraction on the RHS of equation (10) is nothing else than the

expectation of the hazard rate f(x̂(c))/(1− F (x̂(c))). By log-concavity of 1− F , note that the

mentioned hazard rate increases in x̂(c) and decreases in c.

From Theorem 1 in Hadar and Russell (1971), a FOSD decrease in search costs then im-

mediately implies that the expected value of the hazard rate goes up. It follows, then, that

11To be as general as possible we allow the support of the density of search costs to depend on β. We come
back to this issue later.
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the equilibrium price (10) unambiguously decreases when β decreases. The intuition is straight-

forward: when search costs go down, consumers’ reservation values rise; this increases search

activity and demand becomes more elastic. In fact, when all consumers search D(p∗;β) = 1 and

the elasticity of demand simply equals

ε(p∗;β) = p∗
ˆ c(β)

c(β)

f(x̂(c))

1− F (x̂(c))
g(c, β)dc. (11)

As we have argued above, a fall in search costs increases the value of the integral in equation

(11) and thereby the elasticity of demand goes up. The equilibrium price must then decrease.

With additional conditions on the match value density we can state what happens when

search costs decrease in the sense of SOSD (see Theorem 2 of Hadar and Russell, 1971).

Proposition 1. Let G(c;β) be a parametrized search cost CDF with positive density on [c(β), c(β)].

Then:

(A) An FOSD decrease in search costs results in a fall in the equilibrium price given by

Theorem 1A.

(B) An SOSD decrease in search costs results in a fall in the equilibrium price given by

Theorem 1A provided that f ′′ [1− F ]2 + 4ff ′ [1− F ] + 3f3 ≥ 0 (which for example holds when

f is uniform).

The proof of Proposition 1B can be found in the Appendix.

4.2 Sufficiently high search costs

We now move to the case of Theorem 1B. In this case not all consumers choose to search so

a change in the distribution of search costs affects both the intensive and the extensive search

margins. The equilibrium price is given by the solution to equation

L(p∗;β) ≡ G(c̃(p∗);β)− (p∗ − r)
ˆ c̃(p∗)

c(β)

f(x̂(c))

1− F (x̂(c))
g(c, β)dc = 0.

It turns out to be quite useful to rewrite this, dividing by G(c̃(p∗);β), as follows:

L̃(p;β) ≡ 1− (p∗ − r)
ˆ c̃(p∗)

c(β)

f(x̂(c))

1− F (x̂(c))
g̃(c, β)dc = 0, (12)

where

g̃(c, β; c̃(p∗)) ≡ g(c, β)

G(c̃(p∗);β)

denotes the search cost density truncated from above by c̃(p∗).
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By the implicit function theorem, the impact of a (small) decrease in β on the equilibrium

price in equation (12) is given by the sign of

dp∗(β)

dβ
= −

∂L̃(p∗;β)
∂β

∂L̃(p∗;β)
∂p∗

. (13)

We have already argued above that the function L(p∗;β) is decreasing in p∗, and so is L̃(p∗;β),

so the denominator of equation (13) is negative. Therefore the sign of dp∗(β)/dβ depends on

the sign of ∂L̃(·)/∂β.

Note that equation (12) is very similar to equation (10). In fact, the only difference is that

the integral in equation (12) is the expected value of the hazard rate of the consumers who

choose to search, and that is why the integral involves the truncated density. Therefore, the

answer to the question what happens to the price when search costs go down boils down to

finding out what happens to the mentioned expected value.

Denoting the distribution of search costs truncated above by c̃(p∗) by

G̃(c, β; c̃(p∗)) ≡
ˆ c

c(β)
g̃(x, β; c̃(p∗)))dx,

we can state directly (and without proof) the following extension of Proposition 1.

Proposition 2. Let G(c;β) be a parametrized search cost CDF with positive density on [c(β), c(β)].

Then:

(A) An FOSD decrease in search costs results in a fall (increase) in the equilibrium price

given by Theorem 1B if ∂G̃(c, β)/∂β ≤ (≥)0 for all c (and < (>)0 for some c).

(B) Assume that f ′′ [1− F ]2 + 4ff ′ [1− F ] + 3f3 ≥ 0. Then an SOSD decrease in search

costs results in a fall (increase) in the equilibrium price given by Theorem 1B if
ˆ c

c(β)

∂G̃(x;β, c̃(p∗))

∂β
dx ≤ 0 for all c (and < 0 for some c).

This result emphasizes that what really matters for the relationship between the equilibrium

price and β is the way in which the (truncated) search cost distribution of the participating

consumers is affected by changes in β. If a FOSD decrease in search costs results in a FOSD

decrease in the distribution of search costs conditional on participation, then the equilibrium

price will surely decrease. Otherwise, the equilibrium price will increase. This result is similar

for SOSD decreases in search costs.

The intuition behind this result is as follows. When not all consumers search the elasticity

of demand is

ε(p∗;β) = p∗
ˆ c̃(p∗)

c(β)

f(x̂(c))

1− F (x̂(c))
g̃(c, β)dc (14)
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A fall in search costs makes consumers more picky and they search more. Because of this

effect, firms have an incentive to lower their prices. However, a fall in search costs brings new

consumers into the market. These consumers turn out to have relatively large search costs

because otherwise they would have been searching previously. Because of this effect, firms have

an incentive to raise their prices. If the second effect is weak and the distribution of search

costs conditional on search has lower search costs then the price will fall. If the second effect is

sufficiently strong, then the price will rise.

The question is then, under which conditions a (FOSD or SOSD) decrease in search costs

results in a (FOSD or SOSD) decrease in the truncated distribution of search costs? We now

present a well-known result from the statistics literature that enables us to address this ques-

tion:12

Lemma 1. [Ahlswede and Daykin, 1978]. Let f1, f2, f3, f4 be non-negative functions on

[a, b] such that f1 (x) · f2 (y) ≤ f3 (max {x, y}) · f4 (min {x, y}) for all x, y ∈ [a, b]. Then

ˆ b

a
f1 (x) dx ·

ˆ b

a
f2 (x) dx ≤

ˆ b

a
f3 (x) dx ·

ˆ b

a
f4 (x) dx.

Athey (2002) uses this result to show that log-supermodularity is preserved by integration.

Our use of this Lemma is different; as far as we know, it has not been used before to prove the

following result.

Proposition 3. Assume that g(c;β) has the increasing (decreasing) likelihood ratio property,

that is,

g (c; γ) g (d;β) ≤ (≥)g (c;β) g (d; γ)

for any c ≤ d and β ≤ γ. Then, the distribution of search costs truncated from above by

c̃(p∗) corresponding to β (γ), first-order stochastically dominates the distribution of search cost

truncated from above by c̃(p∗) corresponding to γ (β), that is,

G (c;β|c ≤ c̃(p∗)) ≥ (≤)G (c; γ|c ≤ c̃(p∗))

for all c and c̃(p∗).

The proof of this result is in the Appendix. Note that the ILRP (DLRP) is equivalent to

log-supermodularity (log-submodularity) (cf. Athey, 2002).

By combining Propositions 2 and 3 we can state sufficient conditions under which a reduction

in search costs will decrease or increase the equilibrium price. Namely, when the search cost

12We are indebted to Paulo Monteiro for alerting us about this result.
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density has the ILRP with respect to parameter β, then a decrease in β will cause a FOSD

decrease of the truncated search cost distribution, thereby leading to a price decrease. By

contrast, when the search cost density has the DLRP, a decrease in β will cause a FOSD increase

of the truncated search cost distribution and this will result in a higher price.

The final observation we make is that we need to ensure that ILRP and DLRP are compatible

with FOSD and SOSD. Obviously, ILRP is compatible with FOSD (and SOSD by implication)

because the latter is implied by the former. For DLRP to be compatible with FOSD (and hence

SOSD) we just need the (upper bound of the) support of search cost to increase with β (below

we present a few examples).

To summarize, combining Propositions 1-3, we have obtained the following comparative

statics results.

Theorem 2. Let G(c;β) be a parametrized search cost CDF with positive density on [c(β), c(β)].

Then:

(A) If a decrease in β signifies a FOSD decrease of search costs, then the equilibrium price

in Theorem 1A will decrease. If it signifies a SOSD decrease in search costs then the price will

decrease provided that f ′′ [1− F ]2 + 4ff ′ [1− F ] + 3f3 ≥ 0.

(B) If a decrease in β signifies a FOSD or a SOSD decrease in search costs and if g(c;β) has

the ILRP with respect to β, then the equilibrium price in Theorem 1B will decrease. If a decrease

in β signifies a FOSD or a SOSD decrease in search costs and if g(c;β) has the decreasing

likelihood ratio property with respect to β (in which case we must have dc(β)/dβ > 0), then the

equilibrium price in Theorem 1B will increase.

The intuition behind the role played by the increasing or decreasing likelihood ratio property

of the search cost density in Theorem 2 can better be conveyed by means of a couple of instructive

examples. Suppose that search costs are distributed on a fixed interval and that the density

is decreasing. Moreover, suppose that the search cost density satisfies the ILRP, that is, for

γ ≥ β, the relative frequency g(c; γ)/g(c;β) is increasing in c. The ILRP implies that g(c;β)

must decrease more rapidly than g(c; γ). Because both are densities and their integrals must

equal 1, it must be the case that g(c;β) is higher than g(c; γ) for low search costs and otherwise

for high search costs. This in turn implies that for any truncation point, the average consumer

under g(c;β) has a lower search cost than that under g(c; γ). For densities with the ILRP, a

decrease in search costs has a relatively stronger effect on the intensive search margin than on

the extensive search margin and this causes the average consumer to become less elastic after

search costs go down. This leads to a decrease in the equilibrium price. A similar argument
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can be made for increasing densities. In that case, g(c;β) must increase less rapidly than g(c; γ)

which implies that the frequency of low search cost consumers under g(c;β) is higher than under

g(c; γ). An example, which is further elaborated in the Appendix, follows.

Example 1: ILRP Assume that match values are distributed on [0, 1] according to the uniform

distribution and that search costs are distributed on [0, β] according to the density function

g(c) =
β(2 + δ)− 2c

β2(1 + δ)
, with δ ≥ 0.

The CDF of g is

G(c) =
c(β(2 + δ)− c)
β2(1 + δ)

and note that an increase in the parameters β or δ signify a FOSD shift of the search cost

CDF. When β changes, the support changes but when δ changes, the support remains the same.

Moreover, we observe that g has the ILRP with respect to parameters β and δ. For this example,

we can then state that an equilibrium exists and is unique and that an increase in either β or

δ increases the equilibrium price given by Theorem 1A and increases the equilibrium price given

by Theorem 1B.

The effect of lower search costs when the extensive margin plays a role is illustrated in Figure

1. The red curve in graph 1(a) is the density of search costs for δ = 2; the blue curve for δ = 1.

In this graph we set β = 1. The move from the red to the blue density represents a FOSD

decrease of search costs, as can be seen in graph 1(c). The vertical dashed line indicates the

threshold search cost above which consumer choose not to search the market for a satisfactory

product. The corresponding truncated densities and distributions are given in graphs 1(b) and

1(d). What we see is that a FOSD decrease of search costs translates into a FOSD decrease of

the search costs of participating consumers.

With densities that satisfy the DLRP, g(c; γ)/g(c;β) is decreasing in c and we correspondingly

have the opposite. The following example illustrates the situation when the search cost density

satisfies the DLRP.

Example 2: DLRP Assume that match values are distributed on [0, 1] according to the uniform

distribution and that the search cost density is

g(c) =
1 + δ

β(2 + δ)

[
1 +

(
c

β

)δ]
, with 0 < δ ≤ 1/2.

The CDF of g is

G(c) =
c

β(2 + δ)

[
1 + δ +

(
c

β

)δ]
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Figure 1: ILRP and the effect of higher search costs on (truncated) densities and distributions.

and note that an increase in parameter β implies a FOSD shift of the search cost CDF. Moreover,

g has the DLRP with respect to parameter β. (For DLRP to be consistent with FOSD, as

mentioned in Theorem 2, the support has to vary when we move β, which is the case here.) For

this example we can then state that an equilibrium exists and is unique and that a decrease in

search costs decreases the equilibrium price given by Theorem 1A but increases the equilibrium

price given by Proposition 1B.

Example 2 is illustrated in Figure 2. The blue curves represent the densities and distributions,

as well as the truncated counterparts when β = 1.5. The red curves show the case of β = 1.

The parameter δ = 1/2. The move from the blue curves to the red ones represent a FOSD fall

in search costs, as can be seen in graph 2(c). What we can see is that a decrease in search cost

results in a pool of consumers participating that have higher search costs than before (graphs

2(b) and 2(d)). As a result, prices will increase as search costs fall.

5 Fixed search cost heterogeneity

Sometimes consumers also face a fixed search cost before their actual search begins, for instance

when they first have to start up a computer, log onto a website, or drive to a shopping mall.
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Figure 2: DLRP and the effect of higher search costs on (truncated) densities and distributions.

In this section, we study the effect of an increase in fixed search costs on equilibrium prices.

The main objective is to show that because fixed costs do not have a bearing on the gains from

search, increases in fixed search costs, even if they result in a fall in demand, do not have an

impact on the equilibrium price.

Suppose that consumers have to pay a fixed search cost upfront, denoted k, in order to

start searching. Suppose further that consumers are heterogeneous in their fixed search costs.

Let K(k) be the distribution of fixed search costs, with support [k, k̄]. After paying this cost,

consumers proceed as in the model of Section 2, and face a common marginal search cost equal

to c.

Since fixed search costs are sunk after the first attempt to find a satisfactory product, the

search rule given by the solution to equation (1) remains the same. Correspondingly, the surplus

of a consumer with fixed search cost k is equal to CS(k) = x̂(c)−p∗−k. For a consumer to enter

the market this surplus must be strictly positive. Setting CS(k) = 0 and solving for k gives a

critical fixed search cost, denoted k̃(p∗), above which consumers will abstain from searching for

an acceptable product. Defining k0(p
∗) ≡ min

{
k̄, k̃(p∗)

}
the payoff analogous to the payoff of
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the deviant firm i in equation (4) is given by

π(pi; p
∗) = (pi − r)

ˆ k0(p∗)

k

1− F (x̂(c) + pi − p∗)
1− F (x̂(c))

dK for pi < ε− x̂(c) + p∗

and zero otherwise. Because fixed search costs do not affect the reservation value x̂(c), by

integrating we obtain

π(pi; p
∗) = K(k̃0(p

∗))(pi − r)
1− F (x̂(c) + pi − p∗)

1− F (x̂(c))
. (15)

Inspection of equation (15) immediately reveals that a change in the distribution of the fixed

search costs has no bearing on equilibrium pricing because, even though it affects demand, it

does it in a way that does not modify the elasticity of demand.

The main distinction between heterogeneity in the fixed search cost and heterogeneity in

the marginal search cost is that composition-of-demand effects do not matter for pricing in the

former case, but do matter in the latter case. Because the marginal benefits from search for

the consumers who choose to search are not affected by an increase in fixed search costs, the

elasticity of demand is constant no matter the pool of consumers who choose to search. With

heterogeneity in the marginal costs of search, this is quite different because the elasticity of

demand intimately depends on the pool of consumers who choose to search. We conclude by

emphasizing that the mechanism we have identified in this paper does not just arise for any

change in the composition of demand. In fact, for the elasticity of average demand to increase

or decrease as search costs increase, consumers’ marginal benefits from search need to change

as well.

6 Conclusions

Most existing consumer search models are analyzed under the assumption that all consumers

search at least once in equilibrium. In this paper we have argued that it is hard to reconcile

this type of “fully-covered-market” assumption with the general idea that distinct consumers

have different search costs and that, in many markets, some consumers may simply find it not

worthy to start searching for a satisfactory product. Since the decision to search depends on the

equilibrium price, the existing literature has neglected an important role of the price mechanism,

namely, that prices ought to affect the share of consumers who choose to search for a product

in the first place.

We have studied how prices are determined in a model of search for differentiated products

while allowing for arbitrary search cost heterogeneity. Our first contribution has been to provide
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results on the existence and uniqueness of equilibrium. We have shown that when the search

cost density is sufficiently log-concave, a symmetric Nash equilibrium exists and is unique. In

proving this result, we have exploited a mathematical result due to Prékopa (1973) which shows

that log-concavity is preserved by integration.

We have also revisited the question how a decrease in search costs affects the level of prices.

A decrease in search costs affects not only how much consumers search but also who chooses to

search. Recognizing that the price mechanism affects the search composition of demand turns

out to be critical for understanding how prices and profits are affected by lower search costs.

When search costs decrease there are two effects operating in opposite directions: the average

consumer searches more but the identity of the average consumer changes because of the inflow

of consumers with relatively high search costs. We have referred to the first effect as the effect on

the intensive search margin and to the second one as the effect on the extensive search margin.

Our second contribution has been on identifying sufficient and intuitive conditions on search

cost densities under which a decrease in search costs in the sense of FOSD or SOSD has an

unambiguous effect on the equilibrium price. We have singled out a critical property of search

cost densities that plays a decisive role, namely, log-supermodularity (or monotone increasing

likelihood ratio property). When the search cost density is log-supermodular, a decrease in

search costs has a relatively stronger impact on the extensive search margin than on the intensive

search margin. The intuition is that with log-supermodular densities, a decrease in search costs

increases the relative frequency of consumers with low search costs. As a result, the average

consumer who chooses to search has a lower search cost and is correspondingly more elastic. This

causes the equilibrium price to fall. By contrast, when the search cost density is log-submodular

(or has the monotone decreasing likelihood ratio property), a decrease in search frictions raises

the relative frequency of consumers with high search costs. Correspondingly, the average (over

the consumers who continue choosing to search for an acceptable product) demand becomes

less elastic and thereby prices increase. This result is in line with Hortaçsu and Syverson’s

(2004) empirical observation that prices went up in the US mutual fund industry during the late

nineties in spite of the SOSD decrease in search costs that they estimate.
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APPENDIX

Derivation of consumer surplus. As mentioned in the main text, a consumer with search

cost c will stop and buy after the first search when ε > x̂(c); otherwise she will drop the first

option and continue searching, in which case she will encounter herself exactly in the same

situation as before because, conditional on participating, the consumer will continue searching

until she finds a match value for which it is worth to stop searching. Denoting by CS(c) her

consumer surplus, recursively, we must have:

CS(c) = −c+ (1− F (x̂(c)))

´ ε
x̂(c)(ε− p

∗)f(ε)dε

1− F (x̂(c))
+ F (x̂(c))CS(c).

Solving for CS(c) gives

CS(c) =

´ ε
x̂(c)(ε− p

∗)f(ε)dε− c
1− F (x̂(c))

.

Using the value of c from equation (1) we obtain

CS(c) =

´ ε
x̂(c)(ε− p

∗)f(ε)dε−
´ ε
x̂(c)(ε− x̂(c))f(ε)dε

1− F (x̂(c))
=

´ ε
x̂(c)(x̂(c)− p∗)f(ε)dε

1− F (x̂(c))
= x̂(c)− p∗,

which is the expression we give in the text. �

Proof of Theorem 1. It remains to prove that the equilibrium exists when g(x̂−1(t)) is

log-concave in t. For this, we prove that the demand function of a firm i in equation (16) is

log-concave in its own price pi. Once this is proven, it follows that the firm profit function (4) is

quasi-concave in its own price so that the unique candidate equilibrium price given by equation

(6) is indeed an equilibrium.

We start by rewriting the demand function in a more convenient way. Let us use the following

change of variables: t = x̂(c) so that

dt = x̂′(c)dc = − dc

1− F (x̂(c))
.

Noting that

x̂(c0(p
∗)) = x̂(min{c, c̃(p∗)}) = max{x̂(c), p∗}

and

x̂(max{c, ĉ(pi)}) = min{x̂(c̃(pi)), x̂(c)} = min{ε− pi + p∗, x̂(c)}

we have

D(pi, p
∗) =


ˆ x̂(c)

max{x̂(c),p∗}
(1− F (t+ pi − p∗))g(x̂−1(t))dt if pi < p∗,

ˆ min{ε−pi+p∗,x̂(c)}

max{x̂(c),p∗}
(1− F (t+ pi − p∗))g(x̂−1(t))dt if pi ≥ p∗.

(16)
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We now show that the integrand function

`(pi, t) ≡ (1− F (t+ pi − p∗))g(x̂−1(t))

is jointly log-concave in pi and t under the assumption that g(x̂−1(t)) is log-concave in t. Because

the product of log-concave functions is log-concave, `(pi, t) is jointly log-concave in pi and t if

and only if 1 − F (t + pi − p∗) is. Let m(pi, c) ≡ ln[1 − F (t + pi − p∗)]. Taking derivatives we

have:
∂m

∂t
=
∂m

∂pi
= − f(t+ pi − p∗)

1− F (t+ pi − p∗)
.

To construct the Hessian matrix, we now compute the necessary second order derivatives:

∂2m

∂t2
=
∂2m

∂p2i
=

∂2m

∂pi∂t
= −f

′(t+ pi − p∗) [1− F (t+ pi − p∗)] + f(t+ pi − p∗)2

[1− F (t+ pi − p∗)]2
≤ 0,

where the sign follows from the log-concavity of f . From these second derivatives it can readily be

concluded that the Hessian matrix is negative semidefinite; this implies that m(pi, c) is concave

in pi and t. By implication, `(pi, t) is log-concave in pi and t on the convex set

[r, p∗]×[max {x̂ (c) , p∗} , x̂ (c)]∪{(pi, t) : pi ∈ [p∗, pm] , t ∈ [max {x̂ (c) , p∗} ,min {ε− pi + p∗, x̂ (c)}]}

so `(pi, t) is log-concave on [r, pm]×[p∗, ε] because from Prékopa (1971) we know that if a function

is log-concave on a convex set and equal to zero elsewhere then the function is log-concave in

the entire space.

We now invoke the following result by Prékopa (1973), which shows that integration preserves

log-concavity.

Lemma 2. [Prékopa, 1973] Let f(x, y) be a function of n + m variables where x is an n-

component and y is an m-component vector. Suppose that f is log-concave in Rn+m and let A

be a convex subset of Rm. Then the function of the variable x:

ˆ
A
f(x, y)dy

is log-concave in the entire space Rn.

Because `(pi, t) is log-concave in pi and t and we are integrating for all t in the convex set

[p∗, ε], the theorem implies that the demand function (16) is log-concave in pi. We then conclude

that an equilibrium exists and is unique. �

Proof of Proposition 1. Consider the function

h(c) = − f(x̂(c))

1− F (x̂(c))
.
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We know that

h′(c) =
f ′(x̂(c)) [1− F (x̂(c))] + f2(x̂(c))

[1− F (x̂(c))]3
≥ 0

by the log-concavity of 1− F . Given this, result (A) follows directly from Theorem 1 in Hadar

and Russell (1971).

Taking the derivative again we have:

h′′(c) =
{f ′′(x̂(c)) [1− F (x̂(c))] + f(x̂(c))f ′(x̂(c))} x̂′(c) [1− F (x̂(c))]3

[1− F (x̂(c))]6

+

{
f ′(x̂(c)) [1− F (x̂(c))] + f2(x̂(c)))

}
3 [1− F (x̂(c))]2 f(x̂(c))x̂′(c)

[1− F (x̂(c))]6

= −f
′′(x̂(c)) [1− F (x̂(c))]2 + 4f(x̂(c))f ′(x̂(c)) [1− F (x̂(c))] + 3f3(x̂(c))

[1− F (x̂(c))]5
.

Under the assumption f ′′ [1− F ]2 + 4ff ′ [1− F ] + 3f3 ≥ 0 we know that h(c) is an increasing

and concave function. Given this, result (B) follows directly from Theorem 2 in Hadar and

Russell (1971). �

Proof of Proposition 3. We first deal with the case when g(c;β) has the ILRP. Denote

G̃ (c;β) = G (c;β|c ≤ c̃ (p∗)) , g̃ (c;β) = g (c;β|c ≤ c̃ (p∗))

so

G̃ (c;β) =
G (c;β)

G (c̃ (p∗) ;β)
, g̃ (c;β) =

g (c;β)

G (c̃ (p∗) ;β)

where

G (c̃ (p∗) ;β) =

ˆ c̃(p∗)

c(β)
g(c;β)dc.

We now prove that ˆ c̃(p∗)

c(β)
h (c) g̃(c;β)dc ≥

ˆ c̃(p∗)

c(β)
h (c) g̃(c; γ)dc (17)

for any decreasing function h and γ ≥ β. This is equivalent to showing that for any decreasing

differentiable function h we have that

´ c̃(p∗)
c(β) h (c) g(c;β)dc´ c̃(p∗)

c(β) g(c;β)dc
≥

´ c̃(p∗)
c(β) h (c) g(c; γ)dc´ c̃(p∗)

c(β) g(c; γ)dc
. (18)

To prove equation (18), we make use of Lemma 1. Let

f1 (c) = g(c, β), f2 (c) = h(c)g(c, γ),

f3 (c) = g(c, γ), f4 (c) = h(c)g(c, β).
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We show that for all c, d ∈ [0, c̃ (p∗)]

f1 (c) f2 (d) ≤ f3 (max{c, d}) f4 (min{c, d}) ,

i.e.,

g(c, β)h(d)g(d, γ) ≤ g(max{c, d}, γ)h(min{c, d}))g(min{c, d}, β). (19)

Take first c < d. Because max{c, d} = d and min{c, d} = c, (19) simplifies to

g(c, β)h(d)g(d, γ) ≤ g(d, γ)h(c)g(c, β).

which is true because h is decreasing in c and c < d.

Now take c ≥ d; we have max{c, d} = c, min{c, d} = d. In this case, (19) holds whenever

g(c, β)h(d)g(d, γ) ≤ g(c, γ)h(d)g(d, β),

or reorganizing

h(d) [g(c, β)g(d, γ)− g(c, γ)g(d, β)] ≤ 0,

which clearly holds for all c ≥ d if and only if g (c, β) has the ILRP.13 This shows that (17)

holds.

Rewrite now (17) as

ˆ c̃(p∗)

c(β)
h (c) [g̃ (c; γ)− g̃ (c;β)] dc =

ˆ c̃(p∗)

c(β)
h (c) d

[
G̃ (c; γ)− G̃ (c;β)

]
≤ 0.

By integration by parts we have

h (c)
[
G̃ (c; γ)− G̃ (c;β)

]∣∣∣c̃(p∗)
0
−
ˆ c̃(p∗)

c(β)
h′ (c)

[
G̃ (c; γ)− G̃ (c;β)

]
dc

= −
ˆ c̃(p∗)

c(β)
h′ (c)

[
G̃ (c; γ)− G̃ (c;β)

]
dc ≤ 0.

Since this holds for arbitrary h for which h′ (c) ≤ 0, it implies that G̃ (c; γ) ≤ G̃ (c;β) for any c.

For the case of densities that satisfy the DLRP, we prove that

ˆ c̃(p∗)

c(β)
h (c) g̃(c;β)dc ≤

ˆ c̃(p∗)

c(β)
h (c) g̃(c; γ)dc (20)

for any decreasing function h, which is equivalent to showing that for any decreasing differen-

tiable function h we have that
´ c̃(p∗)
c(β) h (c) g(c;β)dc´ c̃(p∗)

c(β) g(c;β)dc
≤

´ c̃(p∗)
c(β) h (c) g(c; γ)dc´ c̃(p∗)

c(β) g(c; γ)dc
. (21)

13If g(c, β) = 0 then the inequality clearly holds for any d. If g (d, β) = 0 then d = 0. Then the fact g (d, β) = 0
means that the derivative of G (c, β) is 0 at 0. Since from FOSD (implied by the ILRP) G (c, γ) ≤ G (c, β), the
derivative of G (c, γ) must also be 0 at 0. Therefore, g (d, γ) = 0, so the inequality holds.
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We can again invoke Lemma 1 and show that this is true for densities with the DLRP. The

implication is that G̃ (c; γ) ≥ G̃ (c;β) for any c. �

Example 1. We first need to prove that an equilibrium exists and is unique for the search cost

density

g(c) =
β(2 + δ)− 2c

β2(1 + δ)
, with δ ≥ 0.

Because match values are uniformly distributed on [0, 1], for existence and uniqueness of sym-

metric equilibrium we only need to check that the function g(x̂−1(t)) is log-concave in t.

Solving the consumers equilibrium condition (1) gives x̂(c) = 1 −
√

2c; therefore x̂−1(t) =

(1− t)2/2. Plugging this into the density function gives

g(x̂−1(t)) =
(1− t)2 − β(2 + δ)

β2(1 + δ)
.

Inspection of this function immediately reveals that it is strictly concave in t; therefore it is

log-concave in t. We conclude that an equilibrium exists an is unique.

We now show that g satisfies the ILRP with respect to parameters β and δ. From Milgrom

(1981), g has the ILRP with respect to parameter β if and only if the ratio g′β/g is increasing in

c, where g′β denotes the derivative of g with respect to β. We have

g′β
g

=
4c− β(2 + δ)

β(β(2 + δ)− 2c)
,

and
d(g′β/g)

dc
=

2(2 + δ)

(β(2 + δ)− 2c)2
> 0.

For the case of parameter δ we have

g′δ
g

=
β

β(2 + δ)− 2c
− 1

1 + δ
,

and
d(g′δ/g)

dc
=

2β

(β(2 + δ)− 2c)2
> 0.

Finally we observe that an increase in either parameter β or δ signifies a FOSD shift of the

search cost CDF. For this we compute

dG

dβ
= −c(β(2 + δ)− 2c)

β3(1 + δ)
< 0

and
dG

dδ
= − c(β − c)

β2(δ + 1)2
< 0.
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The details of the example are now complete. �

Example 2. Consider now the case when search costs are distributed on [0, β] according to the

density

g(c;β) =
1 + δ

β(2 + δ)

[
1 +

(
c

β

)δ]
, with 0 < δ ≤ 1/2,

and again assume match values are distributed uniformly on [0, 1].

For this density function we have

g(x̂−1(t)) =

(1 + δ)

(
2δ +

(
(1−t)2
β

)δ)
2δβ(2 + δ)

.

Taking the second derivative with respect to t gives

d2g(x̂−1(t))

dt2
=

21−δδ
(
1− δ − 2δ2

)
(1− t)2δ−2

β1+δ(2 + δ)

which is clearly negative for 0 < δ ≤ 1/2. Therefore g(x̂−1(t)) is concave in t and by implication

it is log-concave in t. We conclude that an equilibrium exists and is unique.

We now observe that g has the DLRP with respect to parameter β. To see this, we note

that

g′β
g

=
−

1+δ+(1+δ)2
(
c
β

)δ
β2(2+δ)

1+δ
β(2+δ)

[
1 +

(
c
β

)δ] = −
1 + (1 + δ)

(
c
β

)δ
β

[
1 +

(
c
β

)δ]
Taking the derivative with respect to c gives

∂(g′β/g)

∂c
= −

δ2
(
c
β

)δ−1
β2
[
1 +

(
c
β

)δ]2 < 0.

Finally, we note an increase in β shifts the search cost distribution to the right, so higher

β implies a FOSD shift of the search cost distribution. This is seen directly form the following

derivative:

dG

dβ
= −

c(1 + δ)

(
1 +

(
c
β

)δ)
β2(2 + δ)

< 0.

The details of the example are not complete. �

Duopoly.
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In this Appendix we study the duopoly case. Except that there are only two firms in the

market, the rest of the model details are exactly the same as before.14

We now present the derivations to compute the SNE price p∗. For this we derive the (ex-

pected) payoff to a firm i that deviates by charging a price pi < p∗. In order to compute firm

i’s demand, consider a consumer with search cost c who visits firm i in her first search. This

happens with probability 1/2. Let εi−pi denote the utility the consumer derives from the prod-

uct of firm i. Notice that search behavior is exactly the same as in the previous section. The

consumer expects the other firm to charge the equilibrium price p∗. The expected gains from

searching one more time are equal to
´ 1
εi−pi+p∗ [εj − (εi − pi + p∗)]f(εj)dεj . It follows that the

probability that the buyer visits firm i first and stops searching at firm i is equal to

1

2
Pr[εi − pi > max{x̂(c)− p∗, 0}] =

1

2
[1− F (x̂(c) + pi − p∗)] .

where x̂(c) continues to be the solution to equation (1). Consumer c may find the product of

firm i not good enough at first and may therefore continue searching. However, upon visiting

the rival firm j, it may happen that consumer c returns to firm i because such a firm offers her

the best deal after all. This occurs with probability

1

2
Pr[max{εj − p∗, 0} < εi − pi < x̂(c)− p∗] =

1

2

ˆ x̂(c)+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε. (22)

With probability 1/2 consumer c first visits the other firm, firm j. In that case, she will walk

away from product j when searching again is more promising than buying j right away. Upon

visiting firm i, she will buy product i when she finds product i better than j. This occurs with

probability (1/2) Pr[max{εj − p∗, 0} < min{x̂(c)− p∗, εi − pi}], which is equal to

1

2

[
F (x̂(c)) [1− F (x̂(c) + pi − p∗)] +

ˆ x̂(c)+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε

]
.

To obtain the payoff of firm i we need to integrate over the consumers who decide to partic-

ipate in the market. It can be shown that with two firms the surplus of a consumer with search

cost c is given by the expression

CS(c) =
1− F (x̂(c))2

1− F (x̂(c))

[ˆ ε

x̂(c)
(ε− p∗)f(ε)dε− c

]
+ 2

ˆ x̂(c)

p∗
(ε− p∗)F (ε)f(ε)dε. (23)

Setting this surplus equal to zero, we obtain the critical search cost value c̃(p∗) above which

consumers will refrain from participating in the market. Inspection of equation (23) reveals that

14Extending this analysis to the case of N firms is straightforward.
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the last consumer who chooses to search has a search cost c such that x̂(c) = p∗. Using again

the notation c0(p
∗) ≡ min{c, c̃(p∗)}, the expected payoff to firm i is:

πi(pi; p
∗) =

pi − r
2

ˆ c0(p∗)

0

[
(1 + F (x̂(c))) (1− F (x̂(c) + pi − p∗)) + 2

ˆ x̂(c)+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε

]
g(c)dc.

(24)

To shorten the expressions we will from now on write x̂ instead of x̂(c) but the reader should

keep in mind the dependency of x̂ on c. Taking the FOC gives

0 =

ˆ c0(p∗)

0

[
(1 + F (x̂)) [1− F (x̂+ pi − p∗)] + 2

ˆ x̂+pi−p∗

pi

F (ε− pi + p∗)f(ε)dε

]
g(c)dc

− (pi − r)
ˆ c0(p∗)

0
(1 + F (x̂)) f(x̂+ pi − p∗)g(c)dc

− 2(pi − r)
ˆ c0(p∗)

0

[ˆ x̂+pi−p∗

pi

f(ε− pi + p∗)f(ε)dε+ F (x̂)f(x̂+ pi − p∗)− F (p∗)f(pi)

]
g(c)dc.

(25)

Applying symmetry pi = p∗ gives

0 =

ˆ c0(p∗)

0

[
(1 + F (x̂)) (1− F (x̂)) + 2

ˆ x̂

p∗
F (ε)f(ε)dε

]
g(c)dc

− 2(p∗ − r)
ˆ c0(p∗)

0

[
(1 + F (x̂)) f(x̂) +

ˆ x̂

p∗
f(ε)2dε− F (x̂)f(x̂) + F (p∗)f(p∗)

]
g(c)dc. (26)

In order to check how the equilibrium price changes when search costs go up, we proceed by

solving the FOC in equation (26) numerically. We again use the uniform distribution for the

match values. For search costs we use the Kumaraswamy distribution:

Definition: The Kumaraswamy distribution has CDF G(·) and PDF g(·) given by

G (c) = 1−
[
1−

(
c

β

)a]b
, c ∈ [0, β] , a, b > 0;

g (c) =
ab

β

(
c

β

)a−1 [
1−

(
c

β

)a]b−1
. (27)

The Kumaraswamy (1980) distribution is often used as a substitute for the beta-distribution (see,

e.g., Ding and Wolfstetter, 2011). This distribution turns out to be quite useful in our setting

because its likelihood ratio is increasing (for b > 1), decreasing (for 0 < b < 1), or constant

(for b = 1) with respect to the shifter parameter β.15 Note that the β parameter multiplies the

search cost c and scales the support of the distribution. An increase in β therefore shifts the

search cost distribution rightward, which signifies that search costs are higher for all consumers.

15A proof can be obtained from the authors upon request. Observe that the uniform density case is obtained
by setting a = b = 1 in the Kumaraswamy distribution above.
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The focus is on the case in which the upper bound of the search cost distribution β is

sufficiently high (Theorem 1B).

For the case of the uniform distribution we have that

CS(c) = x̂(c)− p∗ − x̂(c)3 − p∗3

3
,

whereas the critical search cost value above which consumers refrain from searching the market

is

c̃(p∗) =
(1− p∗)2

2

In Table 1, we set r = 0 and let search costs be distributed according to the Kumaraswamy

distribution with parameter a = 1 and various levels of the parameters b and β. The table

shows once again that prices decrease when search costs increase when b = 1/2, in which case

the search cost density has the MDLR property. For the b = 1 case (uniform distribution), once

more prices are independent of the search cost upper bound. Finally, when b = 3/2 and the

search cost density has the MILR property, we get the standard result that prices increase with

higher search costs.

b = 3/2 b = 1 b = 1/2

β = 1 β = 2 β = 3 β = 1 β = 2 β = 3 β = 1 β = 2 β = 3

p∗ 0.4713 0.4715 0.4716 0.4717 0.4717 0.4717 0.4722 0.4720 0.4719

π 0.0370 0.0188 0.0126 0.0255 0.0127 0.0085 0.0132 0.0065 0.0043

CS 0.0225 0.0113 0.0076 0.0153 0.0076 0.0051 0.0078 0.0038 0.0025

CS/
´ c̃(p∗)
0 gdc 0.1116 0.1107 0.1105 0.1100 0.1100 0.1100 0.1084 0.1092 0.1095

Welfare 0.0966 0.0491 0.0329 0.0665 0.0332 0.0221 0.0343 0.0168 0.0112

Table 1: Duopoly model (uniform-Kumaraswamy with a = 1)
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