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Abstract

This paper considers network based non-Bayesian opinion formation on a linearly

ordered set of opinions. The general class of constricting and continuous Markov re-

vision functions, that contains the standard weighted average revision functions, is

analyzed. A revision function is constricting if the revised opinion is strictly higher

(lower) ranked than the lowest (highest) ranked observed opinion. The main advan-

tages of the general approach are that (i) it captures a wide range of applications, and

(ii) the constricting property is easily testable.

It is shown that asymptotic consensus occurs in strongly connected networks when-

ever the revision functions of all agents are constricting and continuous. The revision

function does not need to be the same across agents, or across time for a given agent.

Additionally, asymptotic consensus is shown to hold almost surely if agents are subject

to a natural class of probabilistic mistakes when forming their opinions.
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1 Introduction

Social networks play an important role as communication platforms. Individuals interact

with their social peers on an ongoing basis and use the information gained through the

interaction when forming opinions or making decisions. In such interactive environments

individuals adjust their opinions and actions in response to those of their social peers. This

tendency has been documented empirically, as for example in Rogers and Shoemaker [28],

and experimentally in Choi, Gale and Kariv [6] and Lorenz, Rauhut, Schweitzer and Helbing

[16]. In the theoretical literature opinion processes under repeated interaction in social

networks have received substantial attention recently.1 The theoretical literature focuses on

observational learning, where the state of the world is fixed over time and agents observe

private information only once, prior to the onset of interaction.2 A central question then is

how learning of the agents should be modeled.

The literature takes two different approaches. In the Bayesian approach, all agents are

assumed to be Bayesian, that is they update their opinions by making fully rational inferences

regarding the private information of all agents based on the opinions they observe. Such

models serve as a benchmark but fail to represent opinion formation in a realistic manner as

the required inferences can be exceedingly complex. The non-Bayesian approach is founded

on the assumption that agents are unwilling or unable to undertake complex inferences but

instead use simple learning heuristics when updating their opinions. The standard model of

non-Bayesian updating in social networks goes back to DeGroot [7]: the opinion of an agent

in a given period is a weighted average of the last period opinions the agent observed. The

strength and reason for the popularity of the DeGroot model is its tractability. However, to

the best of my knowledge there are no empirical or experimental studies providing conclusive

evidence for weighted average revision functions.3

The main objective of this paper is to provide an alternative model of non-Bayesian

opinion formation in a general environment. Rather than focusing on a particular functional

form I consider a general class of revision functions whose defining functional property is

easily testable and, in fact, is satisfied in a recent experimental study of opinion formation

by Lorenz, Rauhut, Schweitzer and Helbing [16]. The main question of the paper concerns

1See for example DeMarzo, Vayanos and Zwiebel [8], Gale and Kariv [11], Golub and Jackson[12], Jad-
babaie, Molavi, Sandroni and Tahbaz-Salehi [14], Mossel, Sly and Tamuz [21], and Mueller-Frank [22, 23].

2See for example DeMarzo, Vayanos and Zwiebel [8], Gale and Kariv [11], Golub and Jackson[12], and
Mueller-Frank [22, 23].

3See section 2 for details.
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the long run properties of aggregate behavior. That is, under which conditions do all agents

in a network converge to the same opinion?

This question is addressed in the following model. A finite set of agents are organized

in a social network and engage in repeated interaction. In each of countable rounds of

interaction every agents announces his opinion to all his neighbors in the network. The set

of opinions is assumed to be linearly ordered. The first round opinion of each agent might

arise from rational inference on private information while subsequent opinion revisions are

assumed to be based upon a simple learning heuristic; the opinion of an agent in round t is

a function of the last period opinions he observed. The revision functions therefore satisfy a

Markov property as the revision depends only on the last period observed opinions. I consider

the class of continuous and constricting Markov revision functions, that includes the set of

weighted average revision functions as a subset. A revision function is constricting if the

revised opinion is strictly higher ranked than the lowest ranked observed opinion and strictly

lower ranked than the highest ranked observed opinion. The model intends to capture only

observational learning. Beyond the opinions of other agents there are no further sources of

information that might affect one’s opinion.

The paper presents two formal results. Theorem 1 establishes that if the social network is

strongly connected, the revision functions of all agents are continuous and constricting, and

all agents satisfy finite types, then asymptotic consensus holds.4 The individual property of

constricting updating hence leads to consensus in the aggregate in any strongly connected

network. Despite the fact that all agents communicate only locally, their opinions converge

in the long run. Moreover, asymptotic consensus does not require agents to be homogeneous

and it is robust against time inconsistent behavior as long as the set of revision functions

an agent applies over time is finite.5 In other words, Theorem 1 establishes that any kind

of updating behavior that has a non-vanishing attraction to the observed opinions leads to

eventual consensus in strongly connected networks. In an environment with a rich set of

opinions long run disagreement requires some agents to stop paying attention to some of

their neighbors opinions.6

For the second result, I restrict attention to real numbered opinions and consider the

4An agent satisfies finite types if the number of different revision functions the agent uses over time is
finite.

5DeMarzo, Vayanos and Zwiebel [8] consider weighted average revision functions and allow agents to
change their revision function over time. However, they require the relative weights assigned to neighbors
to remain constant over time.

6The set of opinions is assumed to be a linear continuum and hence satisfies richness.
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robustness of asymptotic consensus when agents are subject to probabilistic mistakes when

forming their opinions. Probabilistic mistakes are introduced in the following way. The

opinion of an agent in a given period consists of the sum of his revised opinion, based upon a

Markov revision function, and a random error term. Theorem 2 characterizes a condition on

the stochastic process of mistakes such that asymptotic consensus occurs with probability

one in strongly connected networks, if the underlying revision functions of all agents are

constricting and continuous and all agents satisfy finite types.

The existing economics literature on non-Bayesian learning mainly relies on the DeGroot

[7] model.7 Instead, this paper considers a general class of Markov revision functions, that

includes the set of weighted average revision functions as a subset, and further generalizes the

DeGroot model by allowing the set of opinions to be linearly ordered as opposed to equal the

set of real numbers. The main benefits of generalizing the class of revision functions are the

following. First, as already mentioned, in contrast to weighted average revision functions,

the constricting property is easily testable and there is some experimental evidence for it.

The data generated in a recent experiment by Lorenz, Rauhut, Schweitzer and Helbing

[16] indicates that individuals indeed satisfy the constricting property when revising their

opinion.8 The second benefit is that the use of weighted averages for specific applications

is limited while the general class of revision functions captures types of opinion formation

that are of interest to applied theorists. In section 2, I provide an example of constricting

and continuous revision functions that might serve to model opinion formation subject to

cognitive dissonance. The third benefit of the more general approach is that weighted average

revision functions impose restrictions on the set of opinions. For example, there exists no

natural analog of a weighted average function in the case of linearly ordered opinion spaces.

The constricting property on the other hand naturally extends from real numbered opinions

to linearly ordered opinions. Moreover, the constricting property can be applied to opinion

formation on topological vector spaces and the consensus result carries forward.9

Beyond the added value of mathematical generalization, the main benefit of considering a

linear continuum as opinion space is that opinions are no longer required to be real numbered

but instead can be of a more abstract form.10

7See for example DeMarzo, Vayanos and Zwiebel [8], Golub and Jackson [12], and Mueller-Frank [23].
There also exists a large literature on non-Bayesian learning in computer science and electrical engineering.
See section 5 for a discussion.

8See section 2 for details.
9See the conclusion for a brief discussion.
10As long as the opinion space is endowed with a natural order and satisfies the additional properties of a

linear continuum.
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The rest of the paper is organized as follows. In section 2 I present the model, discuss the

benefits of considering the general class of functions and review recent experimental results

that provide evidence for the constricting property. Section 3 provides Theorem 1 and its

proof. Section 4 considers the extension of probabilistic mistakes and provides Theorem

2. Section 5 discusses the main innovations in context of the existing literature. Section 6

concludes. The proof of Theorem 2 and the proofs of all lemmas are presented in appendix A.

In appendix B I provide an example of a constricting and continuous optimal action dynamic,

and counter-examples for failure of consensus when relaxing finite types and continuity.

2 The Model

A finite set of agents V = {1, ..., v} is organized in a social network represented by a directed
graph, G = (V,E). The nodes in the graph correspond to the agents and the edges, E ⊂ V 2,

correspond to the connections between agents. Let Ni denote the neighborhood of agent i,

Ni = {j ∈ V : ij ∈ E}.

A directed path between nodes k1 and kl is a sequence of nodes k1, ..., kl such that kf+1 ∈ Nkf

for f = 1, .., l− 1. A graph G is strongly connected if there exists a directed path from every

node i ∈ V to every other node j ∈ V .

The focus of the paper lies on the effect of repeated interaction in social networks on the

process of opinions chosen by individuals. Interaction takes place in countable rounds. In

the first round each agent i announces an opinion a1
i ∈ A. The set of opinions A is assumed

to be uncountable and endowed with a strict total order such that (i) A has the least upper

bound property, and (ii) for all a′ ≺ a′′′ there exists a′′ such that

a′ ≺ a′′ ≺ a′′′.

The two conditions on A make it a linear continuum. The order topology on A is denoted

by τA and the corresponding product topology on Av = A by τA. From the second round

onward the opinion ati of agent i in a given round is a function f
t
i (a

t−1) of the opinions of

her neighbors and herself in the previous round,

f ti : A→ A.
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The revision functions are assumed to be local, i.e. if aj = a′j for all j ∈ Ni ∪ {i}, then
f ti (a) = f ti (a

′). Consider a mapping f t : A→ A such that

f t(a) = (f t1(a), ..., f tv(a))

where the revision functions f ti are the components of f
t. The sequence of opinions can be

defined recursively in the following manner. For all t = 2, 3, ...

at = f t(at−1) = (f t1(at−1), ..., f tv(a
t−1)).

I make three assumptions on the revision functions of agents. While I do not impose a

time consistency requirement, in the sense of agents applying the same revision function fi
in all periods, I allow for only finitely many revision functions for each agent. Each agent

has a finite type, i.e. for each agent i there exists a finite set of revision functions
{
f δi
}
δ∈∆

such that f ti ∈
{
f δi
}
δ∈∆

for all t ∈ N. The second assumption is continuity of the revision
function f ti for all agents i and time periods t. The third assumption is that the revision

functions f ti are constricting for all agents i and rounds t.

Definition 1 fi : A→ A is constricting if aj 6= ai for some j ∈ Ni implies

inf
j∈Ni∪{i}

aj ≺ fi(a) ≺ sup
j∈Ni∪{i}

aj.

Intuitively, the constricting property seems reasonable. Agents position their revised

opinion in the strict interior of the two most extreme opinions they observed in the last round.

Since weighted averages, the type of revision function typically analyzed in the literature, are

continuous and constricting they are a subclass of the class of revision functions considered

here. The reader might wonder why it is worthwhile to consider the more general function

class. The main reason for the wide adoption of weighted average revision functions in the

literature is their tractability. By looking at a more general class of functions one loses

tractability. The question is whether the gains from generalization offset its cost.

When departing from the full rationality assumption one should always be concerned

with the verifiability of the assumptions one imposes on behavior in order to avoid arbi-

trariness. To the best of my knowledge there are no experimental or empirical studies that

validate weighted average revision functions. More general properties of updating behavior

might be easier to verify in practice. Lorenz, Rauhut, Schweitzer and Helbing [16] provide an
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experimental analysis of whether observing the opinion of others can undermine the wisdom

of crowd effect. In their study subjects were asked questions with a numerical answer, for

example, what is the length of the border between Italy and Switzerland. They consider

several different treatments but the one of interest to this paper is the full information treat-

ment in which subjects observe the first round answers of 11 other subjects and are asked

to revise their opinion. While the objective of Lorenz et al. was not to identify properties

of individual updating behavior, their data is perfectly suited to test the constricting prop-

erty. In fact, in 281 out of 288 observations the constricting property on individual opinion

revision is satisfied. When considering only the revised opinion of those agents who gave

the lowest or largest answer in the first period, there are 48 observations and in 45, or 93.75

percent, of them the constricting property is satisfied. Therefore, their data indicates that

the constricting property might be a good approximation of opinion formation in certain

environments.

The second benefit associated with the more general class of revision functions is that

weighted averages are limited in terms of their applications. In particular, under a weighted

average revision function the weights assigned to the opinions of neighbors are fixed and

cannot vary with the opinion of the agents. The following example provides a type of

continuous and constricting revision functions which might be interesting from an applied

perspective and where weights depend on opinions. Assume a real numbered set of opinions,

i.e. A = R and consider the following revision function

fi(a) =
∑

j∈Ni∪{i}

aj × wij(a).

where wij : A→ R is defined as follows: let g : R+ → R++ be a continuous, weakly

decreasing function and

wij(a) =
g (|ai − aj|)( ∑

k∈Ni
g (|ai − ak|)

)
+W

wii(a) =
W( ∑

k∈Ni
g (|ai − ak|)

)
+W

where W ∈ R++. The weight an agent assigns to his neighbors opinion is then decreasing

in the distance of their opinions. This revision function might be used to model cognitive

dissonance which refers to the conflict or uncomfortable feeling caused by inconsistent at-

titudes and actions. One way of capturing the conflict resulting from inconsistency is by

7



applying it to intertemporal opinion change of a given agent. When forming his opinion the

agent considers the last period announcements of his neighbors and himself. When faced

with opinions of his neighbors that widely differ from his own opinion expressed in the last

period, the agent might feel discomfort when weighing the distant opinions highly as it leads

to a large shift in his opinion from one period to the next, which he might perceive as having

had a faulty opinion in the last period. When on the contrary the observed opinions of his

neighbors are close to his own, the agent might feel acknowledged and can assign higher

weight to his neighbors opinions as it only leads to a small inter-temporal opinion change.

Widely differing opinions are incorporated, but in a marginal way.

Finally, weighted averages are only applicable to a limited set of opinion spaces. For

example, there is no natural analog of weighted average revision functions in more general

linearly ordered spaces. The constricting property on the other hand, generalizes in a direct

manner from real numbered opinions to linearly ordered opinions and (a little less directly)

to topological vector spaces.

Some readers might be concerned with the somewhat mechanical nature of opinion for-

mation that is considered here. Generally, it is the standard norm in the non-Bayesian

opinion formation literature to consider revision functions that satisfy the Markov property

and hence the mechanical nature. Moreover, the opinion formation process can be thought

of as a learning dynamic in games and there are classes of games where standard learning

dynamics satisfy the constricting property. Hence the learning dynamics of certain types of

games fall into the general class of updating dynamics considered in this paper. Please see

the appendix B for an example of a constricting and continuous learning dynamic.

3 The Robustness of Asymptotic Consensus

The main objective of the paper is to analyze the long run implications of non-Bayesian opin-

ion formation that satisfies the constricting property. There exists a large body of theoretical

literature that establishes the human tendency towards uniform behavior and opinions. The

question is whether this tendency towards asymptotic consensus carries forward to the gen-

eral non-Bayesian opinion formation model considered here. Theorem 1 answers this question

affi rmatively.

8



Theorem 1 Let the network G be strongly connected. If the revision functions of all agents

are continuous and constricting and all agents satisfy finite types, then for every initial

opinion vector a1 ∈ A there exists an opinion L(a1) ∈ A such that the opinions of each

agent converge to L(a1).

The theorem states that asymptotic consensus is a robust outcome under the general class

of constricting and continuous revision functions. If all agents in any strongly connected net-

works satisfy the constricting property and their revision functions are continuous, then all

agents reach consensus asymptotically. Moreover, the result does not depend on time consis-

tent behavior. Agents do not need to apply the same revision function in each communication

round but can switch their revision function infinitely often over time, as long as the set of

functions they are choosing from is finite. Hence asymptotic consensus is a quite robust

outcome and does not rely on the assumption of weighted average revision functions made

so far in the literature.

Prior to presenting the proof and the lemmas involved in it, let me provide some insight

on what could prevent asymptotic consensus. For simplicity consider the special case in

which the set of opinions is R. It is quite intuitive that continuous and constricting revision
functions imply that when considering only the largest and smallest opinion expressed in the

network in a given round the corresponding sequences are weakly monotone and bounded.

Hence the sequence of smallest and largest opinions converge. But they need not converge

to the same limit. So one viable approach to proving the theorem would be to show that

the limit of largest and smallest announcements is indeed the same. However, the proof

presented here has a different structure. The reason for choosing the presented structure is

that its broad idea can be maintained to prove both theorems.11

Let C ⊂ A be the set of all consensus opinion vectors,

C = {a ∈ A : ai = aj for all i, j ∈ V } .

The broad structure of the proof is to show that i) the sequence of opinion vectors {at}t∈N
has a convergent subsequence, ii) this limit of the subsequence is a consensus vector, and

iii) the sequence {at}t∈N converges to the limit of the converging subsequence and hence a
consensus vector. The proof of Theorem 1 relies on the following five lemmas.

11That is Theorem 1 and Theorem 2 in section 4. Moreover, the proof structure can be maintained when
A is a topological vector space.
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Lemma 1 If the network is strongly connected and the revision functions fi of all agents
are continuous and constricting, then

f(a) = a⇔ a ∈ C.

Lemma 1 characterizes the set of fixed points of the mapping f as the set of consensus

points. For a ∈ A denote its supremum and infimum by a+ = sup
i∈V

ai and a− = inf
i∈V

ai

respectively.12

Lemma 2 If f ti is constricting and continuous for all i ∈ V and t ∈ N, then

at+n ∈ At =
{
a ∈ A : at− � ai � at+ ∀i ∈ V

}
for all n ∈ N.

Lemma 3 The set A1 ⊂ A is compact, where

A1 =
{
a ∈ A : a1

− � ai � a1
+ ∀i ∈ V

}
.

Lemma 4 Let G be strongly connected. If f ti is constricting and continuous for all i ∈ V
and t ∈ N, then there exists a finite k ∈ N such that for all a1 ∈ ArC the corresponding

sequence of opinions {at}t∈N satisfies at− � a1
− and a

t
+ ≺ a1

+ for all t ≥ k.

Lemma 5 Let {atλ}tλ∈Λ be a converging subsequence of {at}t∈N and suppose that {atλ}tλ∈Λ

converges to a∗ ∈ C. Then {at}t∈N converges to a∗.

See below for the proof of Theorem 1.

Proof. The result is established in three steps.

1. The sequence {at}t∈N lies in A1 by Lemma 2. A1 is compact by Lemma 3. Hence

{at}t∈N has a converging subsequence {atλ}tλ∈Λ with limit a∗, where Λ ⊂ N and |Λ| =
|N|

12Lemma 2 is an immediate consequence of Lemma 1 and the constricting property. Its proof is hence
ommitted.
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2. Suppose that the limit of the converging subsequence {atλ}tλ∈Λ is a consensus point

a∗ ∈ C. Then {at} converges to a∗ by Lemma 5.

3. Suppose on the contrary that a∗ /∈ C. For a given sequence of revision functions
{f ti }t∈N of agent i, denote by Fi the set of revision functions agent i uses

Fi =
{
f : f = f ti for some t

}
.

Consider the following set of mappings f : A→ A

F = {f = (f1, ..., fv) : fi ∈ Fi for all i ∈ V } .

Finally, denote by Fk the following set of composite mappings

Fk =
{
f1 ◦ f2 ◦ ... ◦ fk : f i ∈ F , i = 1, ..., k

}
.

Fk is the set of all mappings that are equal to a total of k compositions of mappings
in F . Note that all mappings in Fk are continuous due to continuity of the revision
functions of all agents. Furthermore, as all agents satisfy finite types, the set F is

finite which implies finiteness of Fk. Denote by Ft+1,t+k the composition of mappings

{fn}t+kn=t+1,

Ft+1,t+k = f t+k ◦ f t+k−1 ◦ ... ◦ f t+1.

We have Ft+1,t+k ∈ Fk for all t ∈ N. Consider the converging subsequence {atλ}tλ∈Λ

and the corresponding sequence of composite mappings
{
Ftλ+1,tλ+k

}
tλ∈Λ

. Note that{
Ftλ+1,tλ+k(atλ)

}
tλ∈Λ

= {atλ+k}tλ∈Λ

is a subsequence of {at}t∈N. As Ft+1,t+k ∈ Fk for all t ∈ N and Fk is finite, there exists
a F ∈ Fk and an infinite subsequence {atγ}tγ∈Γ of {atλ}tλ∈Λ such that Ftγ+1,tγ+k = F

for all tγ ∈ Γ. Next suppose that {atλ}tλ∈Λ converges to a point a∗ /∈ C which directly
implies that the sequence {atγ}tγ∈Γ converges to a∗ /∈ C. Convergence of {atγ}tγ∈Γ

to a∗ and continuity of F implies the convergence of {atγ+k}tγ∈Γ to F(a∗) = a∗∗. By

Lemma 4 we have a∗− ≺ a∗∗− and a∗∗+ ≺ a∗+. As A is a linear continuum there exists a−
such that a∗− ≺ a− ≺ a∗∗− and a+ such that a∗∗+ ≺ a+ ≺ a∗+. Consider the following
open set in the product topology τA

A�a− = {a ∈ A : ai � a− for all i} .

11



As A�a′ is an open set containing a∗∗ and {atγ+k}tγ∈Γ converges to a∗∗ there exists a

round t′γ such that for all tγ > t′γ we have a
tγ+k ∈ A�a′ . Consider an element of the

sequence {atγ+k}tγ∈Γ that lies inA�a′ and the corresponding set Atγ+k. Note that such

Atγ+k is a subset of A�a′ . By Lemma 2 for all t > tγ + k the sequence {at}t∈N lies in
Atγ+k. Let i− denote the agent that satisfies a∗i− = a∗−. Consider the following open

set Va∗ containing a∗,

Va∗ =
{
a ∈ A : ai− ≺ a−, aj ≺ a1

+ for j 6= i−
}
.

As {atγ}tγ∈Γ converges to a∗ and Va∗ is an open set containing a∗ there exists a round

t′ such that for all tγ > t′ all elements of the subsequence {atγ}tγ∈Γ lie in Va∗. The fact

that A�a− and Va∗ have an empty intersection leads to a contradiction as {atγ}tγ∈Γ is

a subsequence of {at}t∈N. Therefore the limit of the converging subsequence has to be
a consensus point.�

Theorem 1 establishes suffi cient conditions for asymptotic consensus. No mention is made

of necessary conditions. But what can be said about necessary conditions for asymptotic

consensus? Let me address the question in the following way: can asymptotic consensus

be achieved by relaxing, for all agents, one of the three conditions on the revision functions

while keeping the other two conditions as is? By providing a counter-example for each of the

three cases I establish a certain tightness of the suffi cient conditions. All counter-examples

consider the special case in which the set of opinions equals R.

A natural way to relax the constricting requirement is to consider weakly constricting

revision functions for all agents, where the announcement has to be at least as large as the

smallest last period announcement and at most as large as the largest last period announce-

ment. One immediate counter-example to convergence then is given by revision functions

where each agent announces his last period opinion. Continuity and finite types are satisfied

but asymptotic consensus fails for all but consensus points. For examples establishing failure

of consensus when relaxing continuity and finite types see appendix B.

4 Asymptotic Consensus under Probabilistic Mistakes

Theorem 1 has shown asymptotic consensus to be a robust outcome of non-Bayesian opinion

formation on linearly ordered opinion spaces. The objective of this section is to further

12



test the robustness of consensus through the introduction of probabilistic mistakes. Suppose

that the revision functions of agents are continuous and constricting, and agents satisfy

finite types but are subject to probabilistic mistakes when forming their opinion. For this

extension suppose that A = R. Let Xt
i be a real valued random variable. The opinion of

agent i in period t is given by

ati = f ti (a
t−1) +Xt

i

which leads to the following vector of opinions in period t

at = f t(at−1) +Xt

where Xt is a random vector composed of the individual error terms. I make the following

assumption on the stochastic process {Xt
i}t∈N,

Pr

(∑
t∈N

∣∣Xt
i

∣∣ finite) = 1

for all i ∈ V . The probability measure Pr(.) is defined on the infinite product space (Ω∞i ,F∞i )

of the underlying probability spaces (Ωt
i,F ti , P t

i ) of the random variables X
t
i.
13 The condition

implies that {Xt
i}t converges almost surely to a constant random variable that takes the value

zero in all states. One example for a stochastic process satisfying the condition is the case

where Xt
i is uniformly distributed over the interval

[
−δt, δt

]
.

The following theorem establishes the robustness of asymptotic consensus in strongly

connected networks to this type of probabilistic mistakes.

Theorem 2 Let the network G be strongly connected. If the revision functions of all agents

are constricting and continuous, all agents satisfy finite types and the error terms satisfy

Pr

(∑
t∈N

∣∣Xt
i

∣∣ finite) = 1

for all i, then asymptotic consensus holds with probability one for any initial opinion a1 ∈ Rv.

The almost surely result and the corresponding probability measure relates to the product

13The infinite product measure theorem states conditions on the probability spaces (Ωti,F ti , P ti ) corre-
sponding to Xt

i such that a probability measure on the infinite product space (Ω∞i ,F∞i ) exists. I assume
that these conditions are satisfied.
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space (across agents) of the infinite product probability spaces (Ω∞i ,F∞i , P∞i ) of agents.

Theorem 2 establishes that asymptotic consensus is robust against probabilistic mistakes

under certain conditions. Note that independence of the error terms across time or agents

is not necessary.

In order to prove the theorem I consider a deterministic sequence of error terms {xt}t∈N,
xt ∈ Rv, that satisfy absolute convergence. For the given error terms define the sequence of
opinions {atx}t∈N recursively,

a1
x = a1 + x1

atx = f t(at−1
x ) + xt.

The proof of the theorem makes use of the following two lemmas.

Lemma 6 If for all agents i, the series
∑
t∈N
|xti| is finite, and f ti is constricting and continuous

for all t, then the sequence {atx}t∈N is bounded. For every t ∈ N we have

at+mx ∈ At
x =

{
a ∈ Rv : ai ∈

[
at− −

∞∑
l=1

max
i

∣∣xt+li

∣∣ , at+ +
∞∑
l=1

max
i

∣∣xt+li

∣∣] ∀i ∈ V}

for all m ∈ N.

Lemma 7 closes the gap between the deterministic error sequences and the almost sure

result of the theorem.

Lemma 7 Consider a finite product probability space (Ω∞,F∞, P∞),

Ω∞ = Ω∞1 × ..× Ω∞v ,F∞ = F∞1 × ...×F∞v ,

and let P∞i denote the i-marginal of P∞. Consider a set S = (S1, ..., Sv) ∈ F∞ such that

P∞i (Si) = 1 for all i = 1, ..., v. Then P∞(S) = 1.

The outline of the proof of Theorem 2 is as follows. I use Lemma 6 and the Bolzano-

Weierstrass Theorem to show that {atx}t∈N has a convergent subsequence. I then show that
the limit of the subsequence lies on the diagonal of the Euclidean space by applying Lemma 4

and Lemma 6. Finally, I use Lemma 6 together with the fact that the limit of the subsequence

14



lies on the diagonal to show that {atx}t∈N is a Cauchy sequence and therefore converges to
the limit of its converging subsequence. Lemma 7 then concludes the proof by establishing

that the error series converges absolutely for all agents with probability one in the product

space (across agents).

5 Relation to the Literature

This section briefly addresses the main points of distinction of the paper to the vast literature

on non-Bayesian opinion formation in computer science and electrical engineering.14 Some

of the important contributions here are Blondel, Hendrickx and Tsitsiklis [5], Jadbabaie,

Lin and Morse [13], Lobel, Ozdaglar and Feijer [15], Moreau [19], Touri and Nedic [30],

and Tsitsiklis, Bertsekas and Athans [31]. The central question in these papers concerns

consensus. Here opinions are typically real valued or elements of a finite dimensional vector

space. This literature generalizes the DeGroot [7] framework by allowing the weights of

agents to depend on the current time period and the current observed opinions. Necessary

and suffi cient conditions for consensus are then characterized in terms of the sequence of

weight matrices. The main innovation of this paper relative to these parallel literatures

consists in a generalization of the opinion space to a linear continuum (in which case a

weighted average approach cannot be applied in general) and in considering probabilistic

shocks on opinions.

6 Discussion and Conclusion

The objective of this paper is to develop an understanding of long run non-Bayesian opin-

ion formation in social networks. The existing theoretical models fall either under the full

rationality assumption, as for example Gale and Kariv [11], Rosenberg, Solan and Vieille

[29], and Mueller-Frank [22], or are grounded upon tractability considerations, as DeMarzo,

Vayanos and Zwiebel [8] and Golub and Jackson [12]. This paper considers a general class of

functions, encompassing weighted averages, whose defining property can be easily tested ex-

perimentally and empirically. The crucial property is that of constricting opinion formation

under which agents position themselves in the (strict) interior of the smallest and largest

observed opinions. The data gathered in a recent experiment by Lorenz et al. [16] indicates

14While writing the paper the author was unaware of this parallel literature.
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that individuals indeed overwhelmingly satisfy constricting behavior in certain opinion for-

mation environments. A rigorous analysis of their data and further experiments could be very

insightful in regards to the range of environments in which subjects satisfy the constricting

property.

Analyzing the implications of the individual properties of opinion formation, that is the

constricting property, towards aggregate behavior we learn that even in widely dispersed

(but strongly connected) societies, where all agents communicate only locally with a subset

of society, consensus occurs in the long run. Therefore, under non-Bayesian observational

learning in general environments failure of strong connectedness remains the leading expla-

nation for failure of consensus. The tendency of individuals to uniform behavior that has

been established in a wide array of theoretical contributions is shown to be valid for non-

Bayesian opinion formation in social networks. This consensus result is also established to

be robust against agents being subject to probabilistic (decreasing) errors.

The constricting property is introduced, and the consensus result derived, under the

assumption that the set of opinions is linearly ordered. This restriction of the opinion space

is not necessary. The constricting property carries forward to topological vector spaces. It

is then defined as follows: fi is constricting if fi(a) lies in the relative interior of the convex

hull of the opinions agent i observes. That is

fi(a) ∈ ri (co{a ∈ A : a = ai for some j ∈ Ni ∪ {i}})

The consensus result holds and the same overall structure of the proof can be applied under

the assumption that the topology on the opinion space is induced by a norm.15

It is important to emphasize that this paper makes two crucial assumptions that apply

to many but clearly not all settings of opinion formation: (i) a rich opinion space, and (ii) a

common order on the set of opinions, or more precisely the opinion set being a linear contin-

uum. One natural setting in which these conditions apply is one of agents communicating

probabilistic beliefs of some uncertain event occurring, as for example Germany winning the

world cup in 2014. Another setting in which our assumptions are clearly not satisfied is one

of agents discussing the likely winner of the world cup. A companion paper, Mueller-Frank

and Neri [24], considers non-Bayesian opinion formation on a finite set of alternatives. It

15The proofs of the lemmas go through with minor adaptation. The main difference lies in the proof of
the Theorem itself, particular in step 3. where one needs to establish that convergence of the subsequence
to a non-consensus point leads to a contradiction. The proof is available on request.
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is shown that while consensus is relatively easy to achieve in settings with a rich opinion

space and a common order, for example for heterogeneous and time inconsistent agents, as

established in this paper, under a finite set of alternatives agents need to be homogeneous

and their revision function has to have a very specific form in order for consensus to occur.16

This paper establishes that constricting and continuous Markov revision functions lead to

asymptotic consensus in strongly connected networks. The literature on Bayesian learning in

networks, see Gale and Kariv [11], andMueller-Frank [22], establishes (asymptotic) consensus

as the outcome resulting from repeated interaction. Note however, that Bayesian revision

functions can fail the constricting property.17 The Bayesian and non-Bayesian approach

differs crucially in its assumption on the updating mechanism of agents. In particular, the

revision of a Bayesian agent in period t depends on the whole realized and observed history

leading up to period t, while the revision of a non-Bayesian agent depends only on the

observed opinions of period t− 1. Therefore, no conclusions or implications can be drawn in

neither direction.

The reader might be interested in the effi ciency properties of the consensus opinion. Sup-

pose that individuals start of with private information that they correctly incorporate in the

first round of interaction. If agents subsequently act in a non-Bayesian constricting manner,

under which conditions does the consensus opinion correctly represent some or even all of the

private information of agents. In other words, how wise are unsophisticated crowds? Another

companion paper, Mueller-Frank [23] establishes that generically in the class of weighted av-

erage revision functions the asymptotic consensus opinion fails to represent any subset of

private information of agents. Based on the insight gained in the companion paper, there is

little hope of achieving an effi cient learning result in the general class of functions. While

consensus in opinions might be useful for coordination purposes its information aggregation

properties are undesirable.

The reader might also wonder how the results change if the constricting property is

redefined in a sense that agents position themselves in the strict interior of the smallest and

largest opinion of their neighbors, excluding their own last period opinion. This self-exclusive

property allows to consider best response dynamics in games. For example, in a certain class

of local interaction games, convention games, a deterministic best response dynamic as in

Morris [20] satisfies the self—exclusive constricting property. In an earlier working paper, see

Mueller-Frank [25], it is established that asymptotic consensus occurs in strongly connected

16Agents are homogeneous if they use the same revision function.
17For an example see pages 7-8 in Mueller-Frank [25].
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and aperiodic networks if the revision functions of all agents are self-exclusive constricting

and continuous, and all agents satisfy finite types.

One additional point to mention is that while the model and results provided in this paper

are explicitly stated in the context of non-Bayesian opinion formation in networks they apply

in other settings as well. Any dynamic process that satisfies the properties considered here,

leads to asymptotic consensus. One example for a learning dynamic in games that satisfies

the properties can be found in appendix B.

Finally, from a mathematical perspective Theorem 1 implies a fixed point convergence

result for mappings whose components are constricting and continuous functions. The set

of fixed points equals the set of consensus points. For every initial point, the recursive

application of the mapping then leads to convergence to a fixed point. This fixed point

convergence result might be of interest in other areas of economics beyond the applications

analyzed here.

Appendix A

Proof of Lemma 1

Proof. The "⇒" direction follows immediately from the constricting property and the net-

work being strongly connected. For the other direction consider a consensus profile b ∈ C
and a sequence {at}t∈N converging to b such that

ati 6= atj

for all t and i, j ∈ V . Note that since the order topological space is Hausdorff the limit is
unique. Consider a neighborhood Vt0 of b,

Vt0 =
{
a ∈ A : aV0− ≺ ai ≺ aV0+ for all i

}
such that all t ≥ t0 we have at ∈ Vt0 . As fi is constricting we have a

V0
− ≺ fi (at) ≺ aV0+ and

therefore f t (at) ∈ V0 for all t ≥ t0. Hence, {at}t∈N converging to b implies that {f (at) }t∈N
converges to b. Since f is continuous (by continuity of all fi) and {at}t∈N converges to b we
have that {f (at) }t∈N converges to f(b) which implies f(b) = b.�
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Proof of Lemma 3

Proof. Consider a1 with a1
− ≺ a1

+. The proof is presented in a number of simple steps.

1.) As f ti is constricting and continuous for all i ∈ V and t ∈ N, by Lemma 2 we have
a1
− � ati � a1

+ for all i ∈ V and t ∈ N. 2.) f ti constricting implies that if a
t−1
j 6= at−1

i

or at−1
j /∈ {a1

−, a
1
+} for some j ∈ Ni then a1

− ≺ at+ki ≺ a1
+ for all k ∈ N. 3.) G strongly

connected and a1
− ≺ a1

+ implies that there exists i with aj 6= ai for some j ∈ Ni. For such i

we have a1
− ≺ ati = f ti (a

t−1) ≺ a1
+ for all t ≥ 2 by step two. 4.) Next consider the agents j

such that i ∈ Nj. By step three a1
− ≺ ati ≺ a1

+ for all t ≥ 2 which implies a1
− ≺ atj ≺ a1

+ for

all t ≥ 3 by step two. Let dG(j, i) denote the length of the shortest path from j to i in graph

G. Applying the above reasoning inductively implies a1
− ≺ atj ≺ a1

+ for all t ≥ dG(j, i) + 1.

As G is strongly connected and finite there exists a finite k ∈ N such that such that for all
t ≥ k we have a1

− ≺ ati ≺ a1
+ for all i ∈ V̇ . The cutoff k is bounded above by the diameter

of the graph plus one.�

Proof of Lemma 4

Proof. In order to show that At is compact all I need is to show that the set At,

At =
{
a ∈ A : at− � a � at+

}
is compact since the finite product of compact sets is compact. Note that a simply ordered

set endowed with the order topology is compact if and only if the set is a complete lattice.

So for compactness of At it is suffi cient to establish that At is a complete lattice. Since At

is bounded each of its subsets is bounded. A being a linear continuum implies that every

bounded, non-empty subset has the least upper bound property. Since each non-empty

subset of At is bounded above by at+ and below by a
t
− each non-empty subset has the least

upper bound property (and greatest lower bound property) and At is therefore a complete

lattice.�

Proof of Lemma 5

Proof. The proof consists of two parts. The first part establishes, in five steps, that for any

open set Va∗ containing a∗ there exists tλ′ such that Atλ ⊂ Va∗ for all tλ ∈ Λ , tλ > tλ′.

1.) Va∗ equals the union of a collection of basis elements of τA. Therefore there exists a

basis element B ⊂ Va∗ such that a∗ ∈ B. 2.) As A is a linear continuum it is connected

which implies that the basis of the order topology on A contains no singletons. 3.) The

basis element B equals the finite product of open sets
∏
i∈V

Bi where (i) each Bi is a base
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element of the order topology on A, (ii) each Bi contains a∗i , and (iii) Bi 6= a∗i by step

2. B ⊂ Va∗ ⊂ A1 implies that each Bi is bounded below by a1
− and above by a

1
+. 4.) A

being a linear continuum implies that every bounded, non-empty subset has an infimum and

supremum. Let bi− and bi+ denote the infimum and supremum of Bi. Note that by step 3

bi− ≺ a∗i ≺ bi+ for all i. 5.)
⋂
tλ

Atλ = a∗ and Atλ ⊂ Atλ−1 implies that for each i there exists

a tλi− , tλi+ such that bi− /∈ Atλ
i and bi+ /∈ Atλ

i for all tλ > tλi− and tλ > tλi+ which implies

that for all tλ > max{tλ1− , tλ1+ , ..., tλv− , tλv+} we have Atλ ⊂ B ⊂ Va∗ . This establishes that

for any open set Va∗ containing a∗ there exists tλ′ such that Atλ ⊂ Va∗ for all tλ ∈ Λ ,

tλ > tλ′ . To conclude the proof, note that by Lemma 2 for all t ≥ tλ′ we have at ∈ Atλ′ .

Convergence of {atλ}tλ∈Λ to a∗ hence implies convergence of {at}t∈N to a∗.�

Proof of Lemma 6

Proof. For atx ∈ Rv denote the maximal and minimal element by atx+ = max
i∈V

atx+,i and a
t
x− =

min
i∈V

atx−,i respectively. As fi is constricting and continuous we have fi(a
t
x) ∈

[
atx−, a

t
x+

]
for

all i ∈ V . This implies the following bounds for at+1
x− , a

t+1
x+

at+1
x− ≥ atx− −max

i∈v

∣∣xt+1
i

∣∣
at+1
x+ ≤ atx+ + max

i∈v

∣∣xt+1
i

∣∣ .
As
∑
t∈N
|xti| is finite for all i and V finite, there exists ū ∈ R+ such that

∑
t∈N

max
i

∣∣xti∣∣ < ū.

Therefore proceeding inductively from period one we have the following bounds on atx−, a
t
x+

atx− > a1
− − ū = ax−

atx+ < a1
+ + ū = ax+

for all t ∈ N. Hence {atx} lies in A1
x ⊂ Rv,

A1
x = {a ∈ Rv : ai ∈ [ax−, ax+] ∀i ∈ V } .
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Therefore the sequence {atx} is bounded. Moreover, for a given atx we have

at+kx− > atx− −
∞∑
l=1

max
i∈V

∣∣xt+li

∣∣
and

at+kx+ < atx+ +
∞∑
l=1

max
i∈V

∣∣xt+li

∣∣
for all k ∈ N.�

Proof of Lemma 7

Proof. By assumption and definition of the marginal probability measure we have

P∞i (Si) = P∞(Ω∞1 , ...,Ω
∞
i−1, Si,Ω

∞
i+1, ...,Ω

∞
v ) = P∞(Si) = 1

for all i = 1, ...n. As a first step,

P∞(S1, S2,Ω
∞
3 , ...,Ω

∞
v ) = 1

is established. Let SC1 =
{
SC1 ,Ω

∞
2 ,Ω

∞
3 , ...,Ω

∞
v

}
denote the complement of S1 in Ω∞ where

SC1 denotes the complement of S1 in Ω∞1 . P∞(S1) = 1 implies P∞(SC1 ) = 0. Partition

the set S2 into the following two sets S12 = {S1, S2,Ω
∞
3 , ...,Ω

∞
v } and

{
SC1 , S2,Ω

∞
3 , ...,Ω

∞
v

}
.

Countable additivity of the probability measure P∞ implies

P∞(S2) = P∞(S12) + P∞(SC1 , S2,Ω
∞
3 , ...,Ω

∞
v )

P∞(S12) = P∞(S2)− P∞(SC1 , S2,Ω
∞
3 , ...,Ω

∞
v ).

As
{
SC1 , S2,Ω

∞
3 , ...,Ω

∞
v

}
⊂ SC1 , P∞(SC1 ) = 0 and P∞(S2) = 1we have

P∞(S1, S2,Ω
∞
3 , ...,Ω

∞
v ) = 1.

Proceeding inductively concludes the proof.�

Proof of Theorem 2

Proof. Consider a deterministic sequence {xt}t∈N of error terms and the corresponding
sequence of opinions {atx}t∈N. The sequence of opinions is bounded by Lemma 6 and therefore
has a converging subsequence {atλx }tλ∈Λ by the Bolzano-Weierstrass Theorem. I employ the
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same notation as in the proof of Theorem 1. Consider the subsequence {atλx }tλ∈Λ and the

corresponding sequence of functions
{
Ftλ+1,tλ+k

}
tλ∈Λ

. As Ft+1,t+k ∈ Fk for all t ∈ N and Fk

is finite, implied by finite types and finite agents, there exists a F ∈ Fk denoted as

F = f̂m ◦ f̂m−1 ◦ ... ◦ f̂1

and an infinite subsequence {atγx }tγ∈Γ of {atλx }tλ∈Λ such that Ftγ+1,tγ+m = F for all tγ ∈ Γ.

Consider the subsequence {atγx }tγ∈Γ and for each tγ ∈ Γ the functions Gk
tγ : Rv → Rv for

m = 1, ..., k, where

G1
tγ (a) = f̂1(a) + xtγ+1

and Gk is defined recursively

Gm
tγ (a) = f̂k

(
Gk−1
tγ (a)

)
+ xtγ+m.

Note that Gk
tγ (a

tγ
x ) = a

tγ+k
x . Applying the chain rule for limits inductively it can be shown

that the sequence of functions {Gm
tγ}tγ∈Γ converges for every a ∈ Rv. We have

lim
tγ→∞

Gk
tγ (a) = F(a).

for every a. Let a∗ denote the limit of {atλx }tλ∈Λ and hence the limit of {atγx }tγ∈Γ. By

Gk
tγ (a

tγ
x ) = a

tγ+k
x , the reasoning above and continuity of F we have

lim
tγ→∞

atγ+k
x = lim

tγ→∞
lim

a
tγ
x →a∗

Gk
tγ (a

tγ
x ) = lim

a
tγ
x →a∗

lim
tγ→∞

Gk
tγ (a

tγ
x ) = F(a∗) = â∗.

Suppose that a∗ /∈ C. Lemma 4 then implies â∗− > a∗−. Denote the difference by ∆,

∆ = â∗− − a∗−. As {a
tγ+k
x }tγ∈Γ converges to â∗, there exists a time period t̄ such that for all

tγ satisfying tγ + k > t̄ we have

a
tγ+k
x− ≥ â∗− −

∆

2
.

The assumption
∞∑
t=1

|xti| being finite for all i implies that
∞∑
t=1

max
i
|xti| is finite. Therefore there

exists t̂ such that
∞∑
t=t̂

max
i
|xti| < ∆

4
. By Lemma 6, for all t > t̂ we have

atx− > a
t̂
x− −

∆

4
.
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Consider a period t′ such that t′ = tγ + k for some tγ and t′ > max{t̄, t̂}̇. We have

at
′

x− ≥ â∗−− −
∆

2
.

Furthermore we have for all period t > t′

atx− > a
t′

x− −
∆

4
.

Combining the two yields

atx− ≥ â∗− −
3

4
∆

for all t > t′ contradicting the convergence of
{
a
tγ
x

}
tγ∈Γ

to a∗. Therefore a∗ ∈ C. So far it
has been established that there exists a subsequence of {atx}t∈N that converges to a consensus
vector. I show that the sequence {atx}t∈N converges to a consensus vector by establishing that
{atx}t∈N is a Cauchy sequence. For each tγ ∈ Γ consider the sequence

{
a
tγ+m
x

}
m∈N

which

contains all but finitely many elements of {atx}t∈N. By Lemma 6 the sequence
{
a
tγ+m
x

}
m∈N

is bounded. Moreover, the sequence lies in the set Atγ
x where

Atγ
x =

{
a ∈ Rv : ai ∈

[
a
tγ
x− −

∞∑
l=1

max
∣∣∣xtγ+l

i

∣∣∣ , atγx+ +
∞∑
l=1

max
∣∣∣xtγ+l

i

∣∣∣]}

But the diameter of Atγ
x converges to zero with tγ going to infinity as {atγx }tγ∈Γ converges to

a∗ ∈ C and by the assumption
∑
t∈N
|xti| being finite for all i. Therefore {atx}t∈N is a Cauchy

sequence. As a Cauchy sequence in the Euclidean space converges to a limit a∗ if and only if

there exists a subsequence with limit a∗, the sequence of opinion vectors {atx}t∈N converges
to a∗ ∈ C.

For each agent i consider the probability space (Ω∞i ,F∞i , P∞i ) corresponding to the ran-

dom variable
∑
t∈N
|Xt

i|. Let Si denote the subset of Ω∞i where
∑
t∈N
|Xt

i| is finite. By assumption

we have P∞i (Si) = 1 for all i ∈ V . Let (Ω∞,F∞, P∞) denote the product space of the indi-

vidual sample spaces of agents and let S = (S1, ..., Sv) denote the set of states in Ω∞ where

the random variables
∑
t∈N
|X t

i | of all agents are finite. So far it has been established that

asymptotic consensus holds for all states ω ∈ S. In order to prove the theorem it remains to
show that the set S has probability one in the product space (Ω∞,F∞, P∞). If the random

variables are independent across agents this immediately follows from P∞i (Si) = 1. If not,
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then it follows from Lemma 7.�

Appendix B

A Constricting Optimal Action Dynamic

This example is based on a combination of several standard frameworks of (network-

based) repeated interaction under uncertainty. The idea behind the example is that agents

receive initial private information regarding the realized state of the world, and repeatedly

guess the state of the world while observing the history of choices of their neighbors.

Suppose that the prior distribution of the state of the world is standard normal. The

state of the world θ is realized and agents observe a noisy signal about the realized state,

si = θ+ εi where the noise term εi is standard normal and independently distributed across

agents. This distributional assumptions on the state of the world and signals are based upon

the canonical framework for learning from normal random variables by Vives [32]. In each

of countable rounds all agents select an action ati ∈ R that maximizes their expected utility
in the given round conditioning on their private information. Hence agents are myopic in

the way they select actions. This type of myopic behavior is commonly assumed in the

literature on Bayesian learning in networks for tractability reasons. For examples see Bala

and Goyal [4], Gale and Kariv [11] and Mueller-Frank [22]. The (commonly known) stage

utility function of each agent i is given by

ui(a, θ) = K − (θ − ai)2.

The utility functions are modeled as in a recent paper by Acemoglu, Bimpikis and Ozdaglar

[1] on information exchange in social networks. In the first round of interaction the private

information of agents is given by their private signal si. Note that the assumptions on the

utility functions and the distribution on the state and signals imply that the expected utility

maximizing action of an agent equals his private signal. At the beginning of the second

round the private information of each agent i is based upon Bayesian inferences regarding

the private signals of his neighbors given their first period actions. Since the agents perfectly

reveal their private signal through their first period choice, the information of agent i at the

beginning of round two equals the set of signals of his neighbors and himself. The expected

utility maximizing action is then given by the equally weighted average of the signals of his

neighbors and himself. Hence the optimal action of each agent in period two derives from a

continuous and constricting revision function. Note that while the revision function to equal

24



the equally weighted average relies on the variance of the state and noise distribution being

one, the optimal action for any assumption on the variances will be a weighted average of

the signals as long as the mean of the distribution of θ and εi is zero. Hence for all such

distributions of θ and εi the optimal choice in round two is based on a continuous and

constricting revision function.

In regards to the private information of agents in round t > 2, I assume that all agents

have a bounded memory of one period and in period t they behave as if period t− 1 was the

first period. Under these assumptions the process of optimal actions {at}t∈N is based upon
continuous and constricting revision functions.

The assumption of bounded memory can be justified with the large degree of complexity

involved in fully Bayesian inferences in networks. It is common in the literature on non-

Bayesian and even Bayesian learning to make assumption reducing the complexity of infer-

ences. In Bala and Goyal [4] it is assumed that agents do not make inferences regarding the

signals and actions of non-observed neighbors, and as mentioned previously the non-Bayesian

papers by DeMarzo, Vayanos and Zwiebel [8], and Acemoglu, Ozdaglar and ParandehGheibi

[2] assume that agents use a simple revision rule, the weighted average, when updating their

opinion. Finally, there are a number of papers dealing with decision making in dynamic

environments under bounded memory. For examples see Miller and Rozen [17], Monte and

Said [18], Mullainathan [26], and Wilson [33].

The example also highlights that both continuity and the constricting property are sat-

isfied for Bayesian learning in certain circumstances as here for the revision of actions from

period one to period two.

Counter-Example: Relaxing Continuity and its Effect on As-
ymptotic Consensus

First note that the constricting definition imposes conditions only for the case where

disagreement is observed by the agent. The natural way to relax continuity is to assume

lower or upper semicontinuous functions. Consider a complete network consisting of two

agents and the following upper semicontinuous revision functions of the agents

f1(a) =

{
a1+a2

2
if a1 6= a2

a1 + 1 if a1 = a2

f2(a) =

{
a1+a2

2
if a1 6= a2

a1 + 2 if a1 = a2

.
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Assume that initial announcements vector equals a1 = (0, 1) . Then opinions evolve as follows

{(0, 1); (.5, .5); (1.5, 2.5); (2, 2); (3, 4); (3.5, 3.5); ...}. Opinions fail to converge and asymptotic
consensus fails. The example also establishes failure of asymptotic consensus for lower semi-

continuous functions if we change f1 by replacing +1 with −1 and f2 by replacing +2 with

−2.

Counter-Example: Relaxing Finite Types and its Effect on As-
ymptotic Consensus

A counter-example for failure of convergence under infinite types can be constructed

in the following way. Consider a complete, two agent networks with initial announcement

vector a1 = (1, 0). Suppose agents use weighted average updating functions, with weights

varying over time. Let αt, βt be the weights agents 1 and 2 assign to themselves in period

t. Now consider a monotone sequence {at}t∈N in R2 that converges to (3
4
, 1

4
). From the

sequence of announcements {at}t∈N one can construct continuous and constricting updating
functions {f t1}t∈N and {f t2}t∈N that generate the opinion process {at}t∈N. The subsequent
announcement vectors at−1 and at yield the updating function in period t,

at1 = αta
t−1
1 + (1− αt)at−1

2

at2 = βta
t−1
2 + (1− βt)at−1

1 .

Asymptotic consensus fails as the opinion process yields different opinions across agents in

the limit. An apparent reason for failure of asymptotic consensus is the fast convergence of

αt and βt to one which induces agents to approximately disregard the opinion of the other

agent. Moreover, the limit revision function is not constricting.
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