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Abstract

This paper provides a model of social learning where the order in which actions are

taken is determined by an m-dimensional integer lattice rather than along a line as in the

sequential social learning model. The observation structure is determined by a random

network. Every agent links to each of his preceding lattice neighbors independently with

probability p, and observes the actions of all agents that are reachable via a directed

path in the realized social network. We establish a strong discontinuity of learning with

respect to the linkage probability. If p is close to but different from one an arbitrary

high proportion of agents select the optimal action in the limit, for any informative signal

structure. For bounded signals and a linkage probability equal to one, however, there exists

a positive probability that all agents select the suboptimal action. We also show that for

every p < 1 and every unbounded signal structure there exists a bounded signal structure

with strictly better learning properties. Finally, we address robustness by providing a

general characterization of multi-dimensional structures for which our main results carry

forward.
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1 Introduction

Social learning forms an important part of daily life. We observe the choices of others and

take this into account when making decisions. Typically, our choices are influenced by our own

private information as well as the information we infer from the actions of those we observe.

One might then conclude that as the society grows large, the majority of individuals take the

optimal action with a probability that goes to one. But the validity of this conclusion depends

on the specific interaction structure among the individuals.

The standard sequential social learning model (henceforth SSLM) as introduced by Bikhchan-

dani, Hirshleifer and Welch [8] and Banerjee [6] feature a countable set of fully rational agents

making a one-time, binary choice in a predetermined sequence. Each agent receives a condi-

tional independent and identically distributed private signal concerning the realized state of

the world and observes the choices of all his predecessors. These seminal papers show that

the probability of the majority taking the correct action might fail to converge to one as the

society grows. More precisely, from a finite time onward all subsequent agents may take the

suboptimal action.

The SSLM relies on two main features. The first feature is a strict sequential order of

choices, where one agent per period makes a choice. The second feature is that all agents

commonly know the history of choices of all their predecessors. These main features of the

SSLM fail to adequately represent many real world environments where groups of individuals

act simultaneously and the size of the groups is growing over time. Consider for example the

adoption of a new product. As time goes by an increasing number of individuals become aware

of the existence of the product and then face the decision of whether to adopt it or not. The

size of the group that decides whether or not to adopt in any given period hence grows over

time. The active user base of online networking sites such as Facebook and Twitter might serve

as a real world example as it was subject to spectacular growth over a number of years from

their inception.

This paper introduces a model which features (i) a multi-dimension choice order, where in

each discrete point in time a group of agents simultaneously take an irreversible action, (ii) a

growth in the group size over time, and (iii) limited observability of the history for each agent.

The central phenomena in the social learning literature are information cascades, where
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from a finite time period onward all agents ignore their private signal and base their choice

only on the social information that is accumulated in the history of previous choices, and

asymptotic learning, where the probability of selecting the correct action goes to one over time.

Bikhchandani, Hirshleifer and Welch [8] show that in environments with finitely many signals

information cascades always occur. Smith and Sorensen [22] establish that asymptotic learning

holds always, if the signal structure is unbounded, and fails always, if the signal structure is

bounded.

In the context of groups of agents acting in each period, it might be too strong to require

all of them to act optimally or independent of their signal. Instead, it is more natural to focus

on the proportion of agents. Our novel notion of learning, α-proportional asymptotic learning

is satisfied if the probability, that a proportion of at least α of the agents deciding at time t

select the correct action, converges to one as t grows to infinity. Similarly, a γ-proportional

information cascade occurs if the probability, that a proportion of at least γ of agents in round

t select their action independent of their private signal, goes to one as t grows.

The general question we are interested in is whether the properties of social learning that

have been established in the literature carry forward to the more general multi-dimensional

structure. In particular, we are concerned with suffi cient conditions for the occurrence of

proportional information cascades and proportional asymptotic learning.

A standard mathematical structure that features a multi-dimensional choice order and gen-

erational growth is the lattice which is an often used structure in the economics literature. One

example herefore is the contagion literature that uses lattices to describe the local interactions

among players, see for example Morris [19], and Lee and Valentinyi [16].

In the central part of the paper we consider the following model. The agents are organized

in the non-negative orthant of an m-dimensional integer lattice. The round in which a given

agent acts, that is selects one action out of a binary set, is determined by the lattice distance

to the origin. In round 1 the agent placed in the origin (at 0) acts. All agents whose lattice

distance from the origin is exactly t − 1 act in round t. The number of agents selecting an

action in a given round is increasing from round to round, whenever the lattice dimension m

is greater than one. The observation structure is determined by a social network that builds

upon the lattice structure. Each agent links with each of his (lattice) neighboring predecessors
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independently with probability p and observes the actions chosen by all previous agents that

form part of his extended social network. That is, an agent observes the actions of those that

can be reached by a directed path initiating from the agent. The random graph underlying our

observation structure is known as lattice percolation and is well studied in probability theory.1

Note that the SSLM is captured by a one-dimensional lattice with linkage probability p = 1 as

actions are taken along a line and hence in a strict sequential order. One may therefore view

the approach of representing the order of choices and the observational structure via a lattice

as a natural generalization of the SSLM.

We consider both the case of a deterministic social network, p = 1, and the random social

network case with a linkage probability p < 1. It is now apparent why the traditional definitions

of learning and cascades are too strict. For a linkage probability p < 1 both asymptotic learning

as well as information cascades are impossible due to the fact that each given agent observes no

history with positive (bounded away from zero) probability in which case he bases his action

only on his private signal. The proportion of agents that act optimally, or independent of their

signal, is hence a natural object to consider.

We focus primarily on a lattice structure since it has some elegant features that ease the

analysis. From an economic perspective, however, there is no particular reason to focus on a

lattice structure as opposed to a different multi-dimensional structure that features a growing

number of decisions per period over time. A natural question then is whether our analysis is

robust or depends on the properties of the lattice structure. As we show in section 5, our main

results carry forward to a more general multi-dimensional observation structure.

1.1 Summary of Results: Deterministic Social Network

We first characterize asymptotic learning in the deterministic social network with a linkage

probability p = 1. This characterization depends upon the signal structure. First, we estab-

lish that α-proportional asymptotic learning is satisfied for any α < 1 if private signals are

unbounded using a result from Acemoglu et al. [1]. Second, we show that α-proportional as-

ymptotic learning fails for every α > 0 if private signals are bounded. As defined in Smith and

Sorensen [22], private signals are unbounded if the support of the conditional private proba-

1See Durrett [12] and Bollobas and Riordan [9]
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bility (of either state) contains 0 and 1, and bounded if the support includes neither 0 nor 1.

For p = 1, our result on asymptotic learning is qualitatively very close to Smith and Sorensen’s

[22] characterization in the SSLM which establishes that asymptotic learning fails for bounded

signals and is satisfied for unbounded signals, in any equilibrium.

We find a crucial distinction to the SSLM in regards to the occurrence of information

cascades. Herrera and Hoerner [15] consider the bounded signal case and characterize the

absence of information cascades in terms of properties of the signal structure.2 In contrast, we

establish that there exists a positive probability such that from a finite time on all agents, that

do not lie on the boundary of the lattice, cascade. This implies that, in the limit, an arbitrary

high proportion of agents cascade for any bounded signal structure, with positive probability.

1.2 Summary of Results: Random Social Network

Next we consider the case of a random social network. Our main result establishes that for

every α > 0 there exists a corresponding linkage probability p(α) such that α-proportional

asymptotic learning is satisfied for all p ∈ (p(α), 1) in any Perfect Bayesian equilibrium of the

game, independent of the signal structure. Hence as p goes to 1, an arbitrarily large proportion

of agents in late enough generations act optimally.

The intuition for the result is the following. We establish that under the lattice percolation

process underlying the observation structure an arbitrary high proportion of late movers observe

unboundedly many agents that are isolated, i.e. who do not observe anybody. Since the actions

of the isolated agents are conditionally independent, observing unboundedly many such agents

is suffi cient to learn the true state of the world.

Our observation structure features a strong discontinuity at the linkage probability p = 1

in the bounded signals case. While α-proportional asymptotic learning fails for every α > 0

at p = 1, choosing a linkage probability p suffi ciently close to one, induces the proportion

of agents selecting the correct action to approximate one, with a probability that goes to

one. Therefore, introducing infinitesimal observational noise via a random social network can

2By definition information cascades can only occur for bounded signals as under unbounded signals there

exists a positive probability that an agent overturns the decision of his predecessor, for any prior probability

measure.
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significantly improve learning outcomes in a setting with bounded private signals.

Finally, we show that for every γ < 1 there exists a linkage probability p(γ) such that

for every p ∈ (p(γ), 1) a γ-proportional information cascade occurs in any Perfect Bayesian

equilibrium of the game. In other words, adjusting for the linkage probability an arbitrary high

proportion of agents ignore their signal in the long run with probability one.

1.3 Discussion of Results

There are three conclusions from our analysis worth emphasizing. First, allowing for multi-

dimensional decision making leads to a clean relationship between observational noise and the

proportion of asymptotic learners. In a social learning environment where the order of agents’

choices is represented by a multi-dimensional model, the linkage probability p becomes the key

determinant of proportional asymptotic learning rather than properties of the signal space as

in the standard strict sequential model. To be more precise, a specific p provides a lower bound

for the proportion of agents acting optimally in any informative signal structure. As p goes to

one, this lower bound approaches one.

Second, our model provides a new insight on the learning properties of bounded versus

unbounded signals. Throughout the literature, asymptotic learning occurs in any equilibrium

regardless of the signal distribution as long as it is unbounded and typically fails whenever

signals are bounded. In contrast, we show that for any linkage probability p < 1 in some

cases bounded signal distributions achieve superior learning in equilibrium than unbounded

signal distributions. More precisely, for every unbounded signal distribution there exists a

bounded signal distribution for which the probability that the proportion of agents taking the

correct action is asymptotically larger than the corresponding proportion under the unbounded

distribution.

Third, within the multi-dimensional framework we show an interesting relationship between

the occurrence of information cascades and asymptotic learning. In the strict sequential setting

information cascades preclude asymptotic learning: if an agent n selects an action independent

of his signal, then so will all later agents. As this action is only based upon finitely many signals,

those of agent n’s predecessors, the probability of the correct action being chosen is bounded

away from one. In contrast, our results establish a coexistence of proportional information
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cascades and proportional asymptotic learning under bounded signals and lattice dimensions

greater than one. Controlling for the linkage probability, both the proportion of agents that

select an action independent of their signal and the proportion of agents that select the correct

action may exceed any threshold in the long run with probability one.

1.4 Relation to Literature

The most closely related papers are Acemoglu, Dahleh, Lobel and Ozdaglar [1], and Lobel

and Sadler [17]. They study strict sequential decision making in a framework that relaxes the

assumption of common observability of the history. Both papers consider a framework where

the set of agents that a given agent observes is randomly drawn among all his predecessors.

Acemoglu et al. [1] assume that these neighborhood draws are independent across agents and

independent of the signals. Their main result demonstrates the power of unbounded signals, by

showing that asymptotic learning holds for a large variety of such random network topologies.

Lobel and Sadler [17] generalize the approach of Acemoglu et al. [1] by allowing dependence

of the neighborhood draws across agents and by introducing a weaker concept of learning,

where agents are not required to select the correct action with probability one but only with a

probability that an expert selects the correct action.

Interestingly, for p = 1 the m-dimensional lattice is included in the class of observation

structures for which Lobel and Sadler [17] show that their weaker notion of learning is satisfied.

For p < 1, however, the random observation structure generated by the lattice is included in

the class of observation structure for which their concept of learning fails. This follows from

the fact that for p < 1 any given agent observes no history with a probability that is bounded

away from zero across agents. We note that the general multi-dimensional structure for p = 1

considered in Section 5 is incomparable with the two classes characterized by Lobel and Sadler

[17].

Our main results (Theorem 2 and Theorem 4) concerning the learning properties in the

multi-dimensional framework are driven by the feature that most agents have access to an

over time growing subset of isolated decision makers. That is, decision makers that take their

action in isolation and as a result reveal more about their private information. This is the

main characteristic that enables learning in our model. The idea of sacrificial lambs is not
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new to the literature. In fact, Smith [21] demonstrates that an infinite but proportionally

vanishing set of isolated agents (or "sacrificial lambs") enables learning. Acemoglu et al. [1]

generalize this idea and characterize suffi cient conditions on the random observation structure

such that learning holds under bounded signals. This is done via a carefully designed random

structure such that every network realization has the property considered by Smith. In the

experimental literature, Anderson and Holt [2], and Goeree, Palfrey, Rogers and McKelvey [13]

have shown that individuals overturn cascades, that is act based on their signal and as such

play the role of isolated agents. Our contribution in this context is to consider a mathematically

clear and natural structure and study the relation between observational noise, captured by p,

and asymptotic learning.

The rest of the paper is organized as follows. Section 2 introduces the model and our

concepts of information cascades and learning. Section 3 considers the deterministic social

network case. Section 4 analyzes random social networks and provides our main results. Section

5 considers a more general multi-dimensional structure for which our main result holds. Section

6 concludes. All proofs are relegated to the appendix.

2 A Multi-Dimensional Model of Sequential Choice

A countable infinite set of agents N are organized in the non-negative orthant of an m-

dimensional integer lattice Zm
+ ⊂ Rm whose vertices are m-tuples of integers (see Figure 1

below for an illustration of the two-dimensional case). Each agent x makes a single, irreversible

decision, ax ∈ {0, 1} under uncertainty which is represented by a binary state space Ω = {0, 1}.

The true state of the world is drawn according to the uniform prior in round t = 0. The payoff

of each agent x is given by

ux(ax, ω) =

 1 if ax = ω

0 otherwise
.

Agents do not know the realized state but each agent i observes a private signal sx belonging

to a measurable signal space S. The distribution Fω according to which the signal sx is drawn

depends on the state of the world, F0, F1 ∈ ∆ (S). Signals are conditionally independent and

identically distributed across agents. We assume that the probability measures F0 and F1 are
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absolutely continuous with respect to each other but not identical. This implies that signals

have some information value but are not perfectly informative regarding the realized state of

the world.

Figure 1: The 2-dimensional integer lattice.

The lattice determines the order of choices of the agents. In what follows we identify

each agent i with a corresponding point x in the lattice. Define the lattice distance function

dZm+ : Zm
+ ×Zm

+ → R as follows: for two points x,y ∈ Zm
+ the lattice distance dZm+ (x,y) is given

by

dZm+ (x,y) =
m∑
i=1

|xi−yi| .

There are countable decision rounds. In round t ∈ 1, 2, ... all agents with lattice distance of

t − 1 from agent 0 make their decision. In particular, this means that the number of agents

acting in a given round is increasing with the number of rounds.

2.1 The Observation Structure

In the SSLM agents observe the history of choices of their predecessors. By organizing agents

in a lattice, one can distinguish between the order in which actions are taken and the observed

actions of a given agent. Our observation structure is determined by the following random
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directed social network. For any pair of agents x,y such that x = y + ej for some j = 1, ...,m,

where ej is the unit vector in Rm, the edge from x to y is realized independently with linkage

probability p. Any other edge xz with x 6= z+ ej is realized with probability zero. The deter-

ministic social network, p = 1, is denoted by G1 = (Zm
+ , E

m). The nodes of the network are

given by the agents and the set of edges of the graph is given by

Em =
{
xy : x = y + ej for some j = 1, ...,m

}
.

In the random network Gp with linkage parameter p ∈ (0, 1) each edge in Em is formed inde-

pendently with probability p. A realization of the network is denoted by G, while G1 denotes

the deterministic network, and Gp the random variable generating the network. We assume

that the random network is drawn at time t = 0 independently of the state of the world

ω.

The observation structure is linked to the social network as follows. A given agent x observes

the previous actions of all agents that form part of his extended social network, i.e. of all those

agents that can be reached from x through a directed path. The observation structure is

commonly known among all agents while the realized actions are not. In the one-dimensional

case,m = 1, the networkG1 equals an infinite line network with agent 0 as the origin. Therefore,

the one-dimensional case corresponds to the standard sequential social learning setting: agents

decide in strict sequential order and observe the actions of all their predecessors. By increasing

the dimension m, we increase the number of agents that act simultaneously in each round. We

restrict attention to dimensions larger than one.

Figure 2 displays the deterministic social network G1 and the observation set of agent

x = (2, 3) who lies at a lattice distance of 5 from the origin and therefore makes his choice in

period t = 6. All agents denoted by a circle with empty interior lie on a directed path from x

and their actions are observed by agent x. In contrast to the SSLM, for m ≥ 2 agents do not

observe the actions chosen by all their predecessors even in the deterministic network. Consider

for example the agent at (0, 4) who acts prior to x but is not observed by him. Figure 3 displays

a random realization of the social network Gp and the agents whose actions are observed by

agent x.
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Figure 2: The observation set of agent (2, 3) in G1.

Figure 3: The realized random observation set of agent (2, 3).

For a graph G, the distance dG(x,y) between nodes x and y is equal to the length of the

directed path from x to y. If there exists no connecting directed path the distance is set to

infinity. Formally, each agent x observes the actions of all agents in BG(x) where

BG(x) = {y ∈ Zm
+ : dG (y,x) is finite}.
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The set BG(x) describes the extended social network of agent x.

2.2 Information Sets, Strategies and Equilibrium

Denote the game with the above random observation structure, linkage probability p and lattice

dimension m by Γmp . The information set Ix of agent x is given by his signal realization sx, and

the actions chosen by the agents he observes,

Ix = {(sx, {ay}) for y ∈ BG(x)} .

Denote by Ix the set of all possible information sets of agent x. A strategy σx of agent x is a

measurable mapping that assigns a (mixed) action to each possible information set,

σx : Ix → ∆ (A) .

A strategy profile is given by the set of strategies of all agents, σ = 〈σx〉x∈Zm+ . As common in

the literature we solve the game for its Perfect Bayesian equilibria, the set of strategy profiles

σ such that, for each agent x, σx maximizes the expected utility of x given the strategies of all

other agents.

2.3 Proportional Information Cascades and Proportional Asymp-

totic Learning

An information cascade, where from a finite time period onward all agents select the same

action independent of their private signal realization, is a central phenomenon in the social

learning literature. Since the action chosen in such an information cascade is based only upon

the private signals of a finite set of agents there exists a positive probability that the inferior

action is being chosen. Bikhchandani, Hirshleifer and Welch [8] establish that if the signal

support is finite then information cascades occur with probability one. In particular, with

positive probability the suboptimal action is chosen from a finite period on. The equilibrium

property which contrasts information cascades is that of asymptotic learning. In the strict

sequential setting asymptotic learning occurs if the probability with which agents select the

optimal action converges to one over time.
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We provide an alternative definition for both concepts which captures the multi-dimensional

order in which actions are taken. Note that in a random network setting each agent observes

an empty history with positive probability for any lattice dimension m and for every linkage

probability p < 1. Hence, as each agent acts only based upon his signal with positive probability,

neither asymptotic learning nor information cascades can occur. The question arises of how

one should define alternative notions of asymptotic learning and information cascades that are

conceptually close to the standard definitions.

Consider the set of agents that act in period t. Since not all agents can act independent of

their signal nor select the correct action with probability 1, as argued above, we focus on the

proportion of agents doing so. From the perspective of learning, the best possible outcome is

that a large proportion of agents acting in round t select the correct action as t grows.

Let us first define the appropriate notion of proportional asymptotic learning. The game

Γmp together with given a strategy profile σ define a probability measure P
m
σ,p over the sequence

of actions 〈ax〉x∈Zm+ . Denote by Bt the set of agents with a lattice distance of precisely t from

the origin. These are the agents that take their decision at time t + 1. Let bt denote the size

of Bt and let rt be the random variable that represents the number of agents within Bt whose

action matches the realized state.3

Definition 1. Consider the game Γmp . A strategy profile σ satisfies α-proportional asymptotic

learning if

lim
t→∞

Pm
σ,p

(
rt
bt
≥ α

)
= 1.

Under α-proportional asymptotic learning the probability of a proportion of at least α of

the agents in Bt selecting the correct action converges to one with the number of rounds t

growing to infinity.

Next we define the proportional information cascade concept. An agent cascades if his

action is independent of his private signal. Formally, let hx denote a realization of the observed

history of agent x. That is, the information set of agent x is given by Ix = {sx, hx}.

Definition 2. Consider a strategy profile σ. Agent x cascades given history hx, if there exists

an action a such that σx(sx, hx) = a for almost every signal realization sx ∈ S.
3Note that both bt and rt depend on the dimension of the lattice. To simplify the exposition we omit this

dependence.
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Let ct be the random variable that represents the number of agents within Bt that cascade,

i.e. select an action independent of their signal. The proportion of agents that ignore their

signal in period t is represented by the random variable ct
bt
. Proportional information cascades

are now defined as follows.

Definition 3. Consider the game Γmp . A γ-proportional information cascade occurs under

strategy profile σ if

lim
t→∞

Pm
σ,p

(
ct
bt
≥ γ

)
= 1.

In words, a γ-proportional information cascade occurs if the probability that a proportion of

at least γ of the agents in Bt ignoring their signal converges to one with the number of rounds.

3 The Deterministic Social Network Case

We first consider the case of a deterministic social network. Our objective is twofold. First, we

aim at characterizing the conditions under which proportional asymptotic learning is satisfied.

Second, we will study the phenomenon of proportional information cascades in our multi-

dimensional observation structure.

Smith and Sorensen [22] establish that in the SSLM asymptotic learning critically hinges

upon properties of the signal space. They show that asymptotic learning occurs in any equilib-

rium if private signals are unbounded and fails in any equilibrium if private signals are bounded.

Boundedness and unboundedness are properties of the support of the private beliefs induced by

the signals. Let q1 be the private belief of agent 1, i.e. q1 = Pr (ω = 1 |s1 ). Formally, bounded

and unbounded signals are defined as follows.

Definition 4. Let β, β be defined as follows

β = inf {r ∈ [0, 1] : Pr (q1 ≤ r) > 0} , and

β = sup {r ∈ [0, 1] : Pr (q1 ≤ r) < 1} .

The signal structure has bounded private signals if 0 < β < β < 1 and unbounded private

signals if β = 1− β = 0.

The following theorem characterizes asymptotic learning in the deterministic case for any

finite lattice dimension m as a function of the signal structure.
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Theorem 1. For any Perfect Bayesian equilibrium σ of the game Γm1 the following holds:

• If private signals are unbounded, then σ satisfies α-proportional asymptotic learning for

any α < 1.

• If private signals are bounded, then σ fails α-proportional asymptotic learning for any

α > 0.

The theorem establishes that in the deterministic multi-dimensional social learning frame-

work asymptotic learning still critically depends upon whether signals are unbounded. If signals

are unbounded then an arbitrary high proportion of agents take the correct action in the limit

with probability 1. However, if signals are bounded, then an arbitrary high proportion of agents

select the incorrect action with positive probability. There are two ways to interpret the neg-

ative result. On the one hand, failure of learning under bounded signals is quite strong as one

cannot assure any positive proportion of agents taking the correct action in the limit. On the

other hand, depending on the characteristics of the bounded signal structure, the event that

α-proportional asymptotic learning fails for any α > 0 might have arbitrary low probability.

Next we address the possibility of information cascades in our general framework. As

unbounded signals imply asymptotic learning we restrict attention to the case of bounded

signals. The question of whether information cascades are a robust phenomenon, i.e. occur

for more general information and signal structures than the finite signal case considered in

Bikhchandani, Hirshleifer and Welch [8] has been discussed since. In a recent working paper,

Herrera and Hoerner [15] provide a characterization for the absence of information cascades in

terms of the signal structure. They consider bounded signal distributions that satisfy the strict

monotone likelihood ratio property and show that information cascades occur with probability

zero if and only if the signal distributions satisfy the Increasing Hazard Ratio Property (IHRP)

and the Increasing Failure Ratio Property (IFRP). The minimal coordinate of x is denoted by

x−.

Proposition 1. Let ω be the true state of the world, the following event holds with positive

probability pω > 0: All agents select action 1 − ω, and in addition there exists a time t′ such

that for every t > t′ all agents x ∈ Bt cascade for whom x−>0.
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Hence with positive probability from some finite time period on all agents, that lie on the

boundary of the lattice, cascade. The proposition implies the following corollary.

Corollary 1. Consider a game Γm1 with a bounded private signal structure. For any Perfect

Bayesian equilibrium σ and any γ < 1 we have

lim
t→∞

Pm
σ,1

(
ct
bt
> γ

)
≥ r > 0.

The proposition and corollary highlight a stark distinction between our multi-dimensional

model and the strict sequential setting in regards to the occurrence of information cascades.

Here, for any bounded signal structures an arbitrary high proportion of agents cascade in the

long run with positive probability bounded away from zero. This differs from Herrera and

Hoerner’s [15] result under which cascades occur with probability zero for certain bounded

signal structures.

The analysis of the deterministic observation structure uncovered that while the charac-

terization of asymptotic learning is conceptually almost identical to the one in the SSLM, in

terms of information cascades the strict sequential setting differs substantially from any higher

dimensional observation structure.

4 The Random Social Network Case

In this section, we relax the assumption of perfect network connectivity by considering a linkage

probability p smaller than one which makes the social network a random directed graph.

The main question of the paper concerns the possibility of proportional asymptotic learn-

ing in our multi-dimensional environment of choice order in random networks. The following

theorem provides the central result of this paper.

Theorem 2. For every α < 1 there exists a linkage probability 0 < p(α) < 1 such that for every

dimension m ≥ 2 and every p ∈ (p(α), 1) any Perfect Bayesian equilibrium σ of Γmp satisfies

α-proportional asymptotic learning.

Here the cutoff p(α) is the same for all informative signal structures. The theorem states

that if the network connectivity is suffi ciently high, that is the linkage probability p suffi ciently

close to one, then an arbitrary high proportion of agents select the optimal action in the long run
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with probability one. This result sharply contrasts the equilibrium behavior in the deterministic

social network under bounded signals established in Theorem 1 as well as the characterization of

asymptotic learning in the standard sequential model. Note that for p = 1 there exists a positive

probability that an arbitrary high proportion of agents select the suboptimal action in the

limit. Introducing a minimal degree of observational noise, however, leads to an arbitrary high

proportion of agents selecting the optimal action in the limit with probability one.4 In the case

of bounded signals, the multi-dimensional framework therefore features a strong discontinuity

at p = 1 in terms of the learning properties of the equilibria.

The equilibrium behavior also differs significantly under bounded signals in comparison with

the SSLM. While asymptotic learning fails under bounded signals in the strict sequential model,

in our lattice structure asymptotic learning might occur in arbitrary high proportion in the limit

even for bounded signals. The key parameter determining learning in the higher dimensional

setting is the linkage probability. More precisely, the linkage probability provides a lower bound

for the proportion of agents taking the correct action in the limit, for any informative signal

structure.

A necessary condition for proportional asymptotic learning is that a proportion of agents

in a given round have access to an over time growing history. Under unbounded signals this

condition is also suffi cient. In the case of bounded signals, however, observing an infinite history

does not reveal the true state with probability one and hence is not suffi cient for taking the

correct action. However, observing an infinite set of actions taken in isolation is suffi cient for

taking the correct action with probability one. In this context, changing the linkage probability

p has two opposing effects. First, increasing p increases the connectivity of the social network

and hence the expected size of the observed history of a given agent. Second, increasing p

decreases the probability that a given agent acts in isolation.5 The crucial distinction between

the standard framework where the observation structure is represented by a line and our lattice

approach can now be easily understood. In the line, for any linkage probability p < 1 the

probability of an infinite component (an observation path of infinite length) is equal to zero.

In a higher dimensional lattice, however, this is not the case. A standard result in percolation

4To be clear, the theorem does not state that random structures are superior to the deterministic structure

for any p < 1, but only for a close neighborhood of p = 1.
5The implication of these two competing effects is discussed in the subsection below.
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theory establishes that the probability of an infinite component including the origin goes to one

with the linkage probability going to one.

The next question we address concerns the occurrence of γ-proportional information cas-

cades. Consider the case of unbounded signals. No agent ever takes an action independent

of his signal as for every prior belief either action may be optimal conditional on the realized

signal, with positive probability. Hence our question can be refined towards the occurrence of

γ-proportional information cascades under bounded signals.

Intuitively an information cascade seems to prevent asymptotic learning as agents select

actions disregarding their private signals. In the one-dimensional setting this intuition is in

fact correct; the occurrence of an information cascade makes learning impossible. Theorem

2 establishes a relation between high linkage probabilities and an arbitrary high proportion

of asymptotic learners. Therefore, γ-proportional information cascades may be impossible in

an environment with a high linkage probability. Contrary to this intuition we establish the

following result.

Theorem 3. Let private signals be bounded. For every γ < 1 there exists a linkage probabil-

ity p(γ) such that for every dimension m ≥ 2 and for every p ∈ (p(γ), 1), a γ-proportional

information cascade occurs in any Perfect Bayesian equilibrium σ of Γmp .

Theorem 3 establishes that if the linkage probability is suffi ciently high and thus the obser-

vational noise suffi ciently low, then an arbitrary high proportion of agents select their action

independent of their signal in the long run. Our two results provide an interesting insight on the

relationship between information cascades and asymptotic learning. While they exclude each

other in the standard framework, the proportional concepts coexist under bounded signals. To

be more precise, a high proportion of asymptotic learners does not only coexists with a high

proportion of cascading agents but in fact requires it (under bounded signals). To see this, note

that as time increases a high proportion of agents select the correct action with arbitrary high

probability by Theorem 2. This implies that their beliefs are arbitrary close to the true belief.

But as private signals are bounded most agents will eventually disregard their private signal

and base their decision solely on the observed history.
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4.1 Outline of the Proof of Theorem 2

The proof of our main theorem consists of several parts. Each part corresponds to a different

challenge in establishing the result. The main challenge is to show that as the linkage probability

p goes to one most agents observe a growing set of agents that take their action in isolation,

i.e. based only upon their signal. From this we can deduce that as p goes to one most agents

select the correct action.

A priori it is not clear that this occurs as the linkage probability p has two contrary effects as

discussed above. On the one hand as p approaches one the number of agents that a given agent

observes is growing which suggests that the agent might observe more isolated agents. On the

other hand, however, when p grows the probability of a given agent to be isolated decreases.

We approach this problem by making use of the percolation structure of the random network.

More concretely, we rely on a result from the theory of percolation showing that, when reverting

the direction of the edges, the probability of the origin being part of an infinite connected

component goes to one with p. Fix an integer n. We show that for every α < 1 there exists

a linkage probability p(α) such that for every p ∈ (p(α), 1) and for every large enough t, most

agents in Bt have a path in G to some agents in Bt−n with a probability greater than α. That

is, with a probability greater than α most agents in Bt can observe at least some agents in

Bt−n. Moreover, p(α) is independent of n. Using Chebyshev’s inequality we then show that

the proportion of agents in Bt that have access to agents in Bt−n exceeds α with a probability

that goes to one as t grows to infinity.

Based on the above we establish that for every linkage probability p ∈ (p(α), 1) and every

k ∈ N a proportion greater than α of agents in Bt observe at least k isolated agents with a

probability that goes to one when t goes to infinity. Therefore, a proportion greater than α

observe an arbitrary high number of isolated agents with a probability approaching one as t

goes to infinity. Since the action of an isolated agent is solely based on his signal, observing

a growing set of isolated agents reveals the true state of the world with a probability that

approaches one. This implies that the action of those agents converge to the correct action

with a probability converging to one.
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4.2 Bounded Versus Unbounded Signals

Throughout the existing literature on social learning unbounded signals induce superior as-

ymptotic learning properties than bounded signals (see for example Smith and Sorensen [22],

Acemoglu et al. [1], and Arieli and Mueller-Frank [5]).6 This holds true even when the un-

bounded signal distribution is non informative with high probability.7

In our multi-dimensional model, however, bounded signals can outperform unbounded sig-

nals and achieve better asymptotic learning result whenever the linkage probability p is smaller

than 1. To be more precise, for any p < 1 and any unbounded signal structure there exists a

bounded signal structure for which a higher proportion of late movers select the optimal action

than in the unbounded case, with a probability that goes to one over time.

Let us informally explain the logic behind this claim. Fix a value of p < 1, and recall that

Bt is the set of agents that act in period t. It follows from the same logic as applied in the

proof of Theorem 2, that, when t grows large, agents in Bt can be divided into two groups.

The first group comprises those agents that observe unboundedly many agents from previous

periods. The second group comprises those agents that observe boundedly many agents from

previous periods. For a fixed 0 < p < 1 the second group has a proportion of δ = δ(p) > 0 and

the first group has proportion of 1− δ.8

We note that agents belonging to the first group have access to unboundedly many agents

that take their decision in isolation. It therefore holds that the probability with which a member

of the first group takes the optimal action approaches one. Given any signal distribution we

can write the limit proportion of agents that play optimally as follows:

(1− δ) + δq,

where q is the proportion of agents that act optimally within the second group. We note that

as signals do not reveal the true state, it must be the case that q < 1 even for unbounded signal

distributions. For any given unbounded signal distribution one can clearly find another bounded

6Unbounded signals also play an important role in models where agents interact repeatedly. See Mossel, Sly

and Tamuz [20].
7Consider for example the case where the unbounded signal provides no valuable information to the agents

with probability 0.99.
8δ(p) goes to zero as p approaches one.

20



distribution for which the corresponding q is arbitrarily close to 1, and hence outperform any

given unbounded signal distribution.

4.3 Simulation of Equilibrium Behavior

In the following we use simulations to visualize the properties of equilibrium behavior in our

framework. We consider the two-dimensional lattice and binary signals with a precision of .6,

i.e. Pr (s = ω |ω ) = .6 for ω = 0, 1 and the choices of agents within the first 200 rounds. We

consider three different linkage probabilities, p ∈ {.8, .95, 1}. In the underlying equilibrium

strategies each agent selects the action that equals his signal if he is indifferent among both

actions. The figures report the proportion of agents selecting the correct action per round and

the proportion of agents that cascade per round. The proportion is the average computed from

1000 simulations.

Figure 4: Proportion of optimal actions.
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Figure 5: Proportion of cascading agents.

The graphs highlight two of the main results of this paper. First, the introduction of

observational noise improves long run learning as can be seen in figure 4. Second, comparing

the graphs for the proportion of optimal actions and the proportion of agents cascading we can

clearly see the coexistence of proportional cascades and "asymptotic" learning. Finally, note

that from periods 50-200 the linkage probability p = .8 outperforms p = .95 in the sense of a

higher proportion of agents select the correct action (see figure 4). Nevertheless, the slope in

round 200 of the graph corresponding to p = .95 is steeper than that of the graph corresponding

to p = .8. This highlights a trade-offbetween speed of learning and accuracy of learning. While

values of p close to 1 achieve a higher proportion of asymptotic learners, in early rounds a higher

proportion of agents cascade, as can be seen in figure 5, partly on the incorrect action.

5 Extension: A General Multi-Dimensional Model

In this section we address the robustness of our results. The multi-dimensional model we

considered so far is based upon a lattice percolation process. While being a standard type

of random graph, there are no compelling economic reasons to emphasize this random graph

structure over others which feature a growing number of decision makers over time. In this

22



section we provide a more general observation structure for which Theorem 2 and Theorem 3

hold.

Let G = (N,E) be a an infinite directed deterministic graph where N is a countable set of

vertices corresponding to the set of agents, and E is the set of directed edges. Assume that N

is partitioned into disjoint groups Bt, the set of agents that take their action in period t,

N =
⋃
t∈N

Bt.

Assume further that the set of agents in Bt+1 is directly linked only to the agents in Bt. For any

agent x ∈ N , let Nx be the set of agents which agent x is directly linked to, i.e. those acting

one period before him and whom he observes.9 For any subset V ⊂ Bt, we let D(V ) ⊂ Bt−1 be

the subset of agents for whom there exists a directed edge from at least one agent in V , and

let d(V ) = |D(V )| be the size of D(V ). Let M ≥ 2 denote a natural number.

Definition 5. A subset V M
t ⊂ Bt satisfies M-boundedness if the following conditions hold:

1. For any subset V ⊂ V M
t it holds that |V |+ 1 ≤ d(V ) ≤M × |V |,

2. for any x ∈ V M
t the subset {y ∈ V M

t : y 6= x, Ny ∩Nx 6= ∅} is smaller than M .

The first condition says that any subset V of V M
t collectively observes at least |V |+1 agents

from Bt−1 and at most M × |V |. The second condition says that for every x ∈ V M
t the number

of agents y ∈ V M
t , different from x, that share a common observed agent with x is less than

M .

Definition 6. A graph G has a bounded interdependent observation structure if there exists a

natural number M ≥ 2 such that the following conditions hold:

(i) limt→∞ |Bt| =∞,

(ii) there exists a sequence of M -bounded subsets {V M
t }t≥1 such that V M

t ⊂ Bt and

lim
t→∞

|V M
t |
|Bt|

= 1.

9A direct link refers to an edge.
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Note first that any m-dimensional lattice Zm+ has a bounded interdependent observation

structure withM = m. To see this, let V M
t be the set of all interior points in Bt, i.e., the points

that lie at a distance of t from the origin for whom all lattice coordinates are positive.

Next we introduce a random graph structure similarly as in the lattice case. For a deter-

ministic graph G, consider the percolation graph Gp where each edge in G is realized with

probability p, where 0 < p < 1. The percolation graph Gp induces a game Γp where every agent

x observes the set of agents that he is linked to by a directed path, and where all agents at a

distance of t (in graph G) from the initial agents act in period t+ 1.

Theorem 4. Consider the percolation graph induced by a graph with bounded interdependent

observation structure. For every α < 1 there exists a linkage probability 0 < p(α) < 1 such

that for every p ∈ (p(α), 1) any Perfect Bayesian equilibrium σ of Γp satisfies α-proportional

asymptotic learning.

Theorem 3 is generalized in the same manner. The proof of Theorem 4 goes along similar

lines to the proof of Theorem 2 and is therefore omitted. To give some intuition, note that for

every n the observation structure of agent (n, n) in the two-dimensional lattice can be embedded

in the observation structure of almost every x in V M
t for every large enough t. Percolation based

reasoning similar to that employed in the proof of Theorem 2, establishes the existence of a

subset of agents in V M
t , with a proportion that can be made arbitrarily close to 1 as a function

of p, such that all of its members observe unboundedly many isolated agents for growing t.

6 Conclusion

This paper contributes to the literature on social learning by providing a natural generalization

of the strict sequential setting. We represent the order of choices of agents via a general integer

lattice structure rather than via a line. When the lattice dimension is higher than one, the

number of agents acting in a given round is increasing over time. Based on this feature of

our model we formulate the concepts of proportional information cascades and proportional

asymptotic learning which require only a proportion of agents in a given round to cascade or

select the correct action.

The introduction of observational noise leads to a neat characterization of proportional
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asymptotic learning. The occurrence of proportional asymptotic learning depends uniquely on

the linkage probability of the random network rather than on properties of the signal space, as

in Smith and Sorensen [22] and Acemoglu, Dahleh, Lobel and Ozdaglar [1]. More precisely, the

linkage probability provides a lower bound for the proportion of agents taking the correct action

in the limit, for any informative signal structure. Therefore, introducing a minimal amount of

noise via random social connections in an environment with bounded private signals results in

a substantial improvement of information aggregation in equilibrium. That is, an infinitesimal

amount of noise in the observation structure allows for an arbitrary high proportion of agents

selecting the correct action in the limit.

Our different modelling approach leads to phenomena that fail to occur in the strict sequen-

tial model. In our deterministic multi-dimensional model with bounded signals there exists a

positive probability for which an arbitrary high proportion of agents act independent of their

signal in the long run, in contrast to the recent characterization of information cascades in the

strict sequential framework provided by Herrera and Hoerner [15]. Finally, we show that in our

multi-dimensional model with random observations, bounded signal structures can outperform

unbounded signals in terms of their asymptotic learning properties.

A Appendix

A.1 Proof of Proposition 1

Proof of Proposition 1. Assume for simplicity that the two agents (0, 1) and (1, 0) are playing

according to the same strategy, and that for every action a played by agent (0, 0) there exists a

positive probability that the action 1− a is played by either of the agents. That is, we assume

that neither agent (0, 1) nor agent (1, 0) are cascading.10 This assumption implies that,

Pσ,1(ax = 1|ω = 1, a(0,0) = 1) > Pσ,1(ax = 1|ω = 0, a(0,0) = 1) (1)

for x ∈ {(0, 1), (1, 0)}.

For every agent x we let px be the public belief of agent x prior to receiving his signal

given that all the players in his observation set play action 1. Clearly, the sequence {p(0,t)}t is
10The assumption makes the analysis more transparent and saves notational complications.
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increasing sequence bounded by 1 and therefore converges to a limit q′. By Lemma 2 in Smith

and Sorensen [22],

q′ ≥ 1− β. (2)

A similar argument holds for the sequence {p(t,0)}t.

For every t let pt = min{p(0,t), p(t,0)} and q = limt→∞ pt. Define the likelihood ratio for every

player x by,

Lx =
px

1− px
.

Let Lt = pt
1−pt , and L =

1−β
β
. By definition if Lx > L then agent x chooses action 1 with

probability 1 regardless of his signal.

Since pt → q ≥ 1− β, we must have limt Lt ≥ L. Hence by equation (1) there exists t0 such

that

L∗ := Lt0+1 ·
Pσ,1(ax = 1|ω = 1, a(0,0) = 1)

Pσ,1(ax = 1|ω = 0, a(0,0) = 1)
> L.

Let R be the event that all agents x such that x− = minx = 0, and all agents prior to and

at time 2t0 chose action 1. Note that agent x = (t, 0) ∈ Z2+ observes all agents (l, 0) for l < t.

Similarly, agent x = (0, t) observes (0, l) for l < t. Hence, the observation structure of every

agent x with x− = 0 is identical to the strict sequential model. Since signals are bounded,

Theorem 3 in Smith and Sorensen [22] implies that with positive probability all agents x such

that x− = 0 take action 1. Therefore the event R occurs with positive probability under σ

conditional on the true state being 0.

We shall show that given the event R all agents choose action 1 under σ. Moreover we shall

further show that all agents x ∈ Bt such that t > 2t0 and x− > 0 cascade.

Let x ∈ B2t0+1. If x− = 0 then clearly given the event R we must have that ax = 1. Assume

that x− > 0. Let,

K1 = {(0, 0), (0, 1), . . . , (0, t0)} ∪ {(1, 0)},

and

K2 = {(0, 0), (1, 0), . . . , (t0, 0)} ∪ {(0, 1)}.

By definition the observation set BG(x) of agent x contains one of these two sets. Assume

for simplicity that it contains the agents in K1. Let L1 be the likelihood ratio obtained from
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observing K1. By definition the set K1 \ {(1, 0)} = BG((0, t0 + 1)). Since given the event R all

agents in K1 take action 1 we can deduce from Bayes rule that,

L1 ≥ Lt0+1 ·
Pσ,1(ax = 1|ω = 1, a(0,0) = 1)

Pσ,1(ax = 1|ω = 0, a(0,0) = 1)
> L.

Since K1 ⊂ BG(x) and all agents in BG(x) take action 1 we must have that,

Lx ≥ L1. (3)

Hence agent x cascades. A simple inductive argument shows that given R it holds for all agent

x ∈ Bt such that t > 2t0, and x− > 0 that,

Lx ≥ L1 > L.

This concludes the proof of the lemma and the proof of Theorem 1

A.2 Proof of Theorem 1

Proof of the first part of Theorem 1. We first show that if private signals are unbounded, then

the equilibrium σ satisfies α-proportional asymptotic learning for any α < 1. Let f : Zm
+ → N

be a bijection that assigns a unique natural number to every agent x. We shall identify every

agent x with f(x). For every n, let Yn be a Bernoulli random variable that corresponds to the

payoff of agent n.

By Theorem 2 in Acemoglu et al. [1], limn→∞Pσ,1(Yn = 1) = 1. Let ε > 0.11 There exists

a large enough n0 such that for every n > n0,

E(Yn) > 1− ε. (4)

Let t0 be suffi ciently large such that for every t > t0 and x ∈ Bt it holds that f(x) > n0.

Let bt = |Bt| and let St =
∑
x∈Bt Yx

bt
. For every t > t0 we get from (4) and the linearity of the

expectation operator that,

E(St) > 1− ε.

Since St is bounded above by 1 and since ε is arbitrary we get that,

lim
t→∞

E(St) = 1. (5)

11For expositional clarity, we omit the dependence of the probability expression of m.
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Again since St is bounded above by 1, equation (5) implies that for every α < 1,

lim
t→∞

Pσ,1(St < α) = 0.

Hence for every α < 1

lim
t→∞

Pσ,1(St ≥ α) = 1,

as claimed.

We now turn to the second part of Theorem 1. Assume for simplicity that the lattice

dimension m equals two, a similar argument holds for any m > 2. Fix a Bayesian equilibrium

σ. By Proposition 1, if the true state of the world is ω then there exists a positive probability

pω > 0 such that all agents take action 1− ω. It then follows that α proportional learning fails

for every α > 0. More generally we establish the following lemma which implies the second

part of the theorem.

A.3 Proof of Corollary 1

Proof of Corollary 1. By Proposition 1 there exists a positive probability p > 0 and a time t′

such that for every t > t′, all agents x cascade for whom x− > 0. Hence with probability p for

every time t > t′ the proportion of agents that cascade is t−1
t+1
. In general, for lattice dimension

m this proportion equals bt−m
bt
, and goes to 1 as t goes to infinity. Recall that ct is the number

of cascading agents at time t. We have that for every γ < 1, there exists a t̂ such that for every

t > t̂

Pσ,1(
ct
bt
> γ) > 0.

A.4 Proof of Theorem 2

For simplicity we assume that the dimension of the lattice is 2.12 Consider the following infinite

random directed graph. Call each x ∈ Z+2 a node. Assume that for each node x each of the

edges (x,x+ (0, 1)), (x,x+ (1, 0)) is formed with independent probability p. Assume that the

edges are formed independently across all nodes. This random graph structure is known as

12See the end of the appendix for a discussion of the general case.
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oriented percolation and differs from our random network only by reverting the direction of the

edges. For a certain realization of the random graph, say that a node x ∈ Z2 is reachable from

the origin if there exists a directed path leading from 0 to x. We let ξ0t be the random set of

all nodes that are reachable and lie in a distance of t from the origin.

The following proposition is a straightforward corollary from Durrett [12].13

Proposition 2. Let Υ be the event that there exists an infinite path starting at the origin.

Then Pp(Υ) ↑ 1 as p ↑ 1.

As a corollary from the proposition one may deduce that the size of the set ξ0t is growing to

infinity with probability that approaches 1 when p tends to 1. To make the proof self contained

we shall formally introduce this argument in the following lemma.

Lemma 1. For every α < 1 there exists a positive p(α) < 1 such that for all p ∈ (p(α), 1) the

following holds. For every integer l there exists t(l) such that

Pp(∀t ≥ t(l), |ξ0t | ≥ l) > α.

Proof of Lemma 1. Assume by contradiction that the lemma does not hold. As a result, the

following must be true:

• There exists ε′ > 0 such that for every δ > 0 there exists a p ∈ (1 − δ, 1), and Mp > 0

such that the following holds:

Pp(|ξ0t | ≤Mp i.o. ) ≥ ε′.

By Proposition 2 Pp(Υ) →p→1 1. We can therefore find ε0 > 0, and large enough p such

that

Pp(1 ≤ |ξ0t | ≤Mp i.o.) ≥ ε0.

For each k let Ak be the event that the inequality 1 ≤ |ξ0t | ≤ Mp holds for at least k distinct

times. For l ≥ k, let Ak,l be the event that at time l the inequality 1 ≤ |ξ0t | ≤ Mp holds for

the k-th time between times 0 and l. Note that Ak = ∪l≥kAk,l and that Ak,l ∩ Ak,m = ∅ for

m 6= l. Let δ = 1− (1− p)2Mp . We shall show by induction that Pp(Ak) ≤ δk−1. For k = 1 we

13This follows, for example, from the proof on page 1005.
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obviously have Pp(A1) ≤ 1. Assume that Pp(Ak) ≤ δk−1. We shall show the following holds

for Pp(Ak+1):

Pp(Ak+1)

=

∞∑
l=k

Pp(Ak,l)Pp(Ak+1|Ak,l) (6)

≤
∞∑
l=k

Pp(Ak,l)δ (7)

= Pp(Ak)δ ≤ δk (8)

Equation (6) is clear from the law of total probability and the fact that Ak+1 ⊂ Ak. Pp(|ξ0l+1| =

0| |ξ0l | ≤Mp) ≥ 1− δ together with

Ak+1 ∩ Ak,l ⊂ {|ξ0l+1| = 0}c ∩ Ak,l

imply that

Pp(Ak+1|Ak,l) ≤ δ.

Hence, inequality (7) follows. Inequality (8) follows from the induction hypothesis. Hence since

{Ak}k is a decreasing family of events we have,

Pp(1 ≤ |ξ0t | ≤Mp i.o.) = Pp(
⋂
k

Ak) = lim
k
Pp(Ak) = 0.

This stands in contradiction to the assumption.

Fix α > 0, and p ∈ (p(α), 1). Let x = (i, j). Assume that i, j ≥ n and let t = i+ j+ 1. The

set ξxn = B(x) ∩ Bt−n represents the set of agents that can be observed by x and make their

decision n periods prior to x, at time t− n. A critical point of our analysis is the fact that |ξxn|

and |ξ0n| have an identical distribution. That is the number agents in Bn that can be reached

from the origin has the same distribution as the number of agents in Bt−n that can be observed

by x.

Let T n,l be the subset of agents x for whom |ξxn| ≥ l. Given x = (i, j), using the above

observation and Lemma 1, one can deduce that if n ≥ t(l) and i, j ≥ n then the probability

that x ∈ T n,l is greater than α. Formally we have the following corollary.
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Corollary 2. Let p(α) be defined as in Lemma 1. For every p ∈ (p(α), 1) and l ∈ N there

exists t(l) such that for every n ≥ t(l), and an agent x = (i, j) ∈ Bt such that i, j ≥ n

Pp(x ∈ T n,l) > α.

Proof of Corollary 2. Let p ∈ (p(α), 1). By Lemma 1 there exists t(l) such that for every n ≥ t(l)

it holds that Pσ,p(|ξ0n| ≥ l) > α. Since the set |ξxn| has identical distribution to |ξ0n| we have

that,

Pp(x ∈ T n,l) > α.

Call agent x isolated if he does not observe any other agents. Let Rk
t be the set of agents

in Bt that can observe at least k isolated agents, and let rkt be the size of R
k
t .

The following lemma shows that if p is large enough, then for every k the proportion of

agents that can observe at least k isolated agents exceeds α with probability that goes to 1

when t increases.

Lemma 2. For every p ∈ (p(α), 1), and k

lim
t→∞

Pp(
rkt
bt
> α) = 1.

It is important to note that p (α) depends only on α and not on k. Before proving the

lemma we establish the following auxiliary result.

Lemma 3. For every t ∈ N let {X t
i}1≤i≤mt be a sequence of Bernoulli random variables for

which there exists ε > 0, and α > 0 such that E(X t
i ) ≥ α + ε for every i. Assume that there

exists an integer n such that for every i the random variable X t
i depends on at most n other

random variables from {X t
i}1≤i≤mt, and that mt →t→∞ ∞. Then,

lim
t→∞

P(
1

mt

mt∑
i=1

X t
i > α) = 1.

Proof. The proof follows from Theorem 2 in Andrews [3]. It also follows directly from Cheby-

shev inequality.
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Proof of Lemma 2. Note first that the probability that a given agent x ∈ Bt observes at least

k isolated agents from Bt−n, is larger or equal to the following expression

Pp(x ∈ T n,l)Pp(at least k agents out of l are isolates). (9)

The probability of each y ∈ ξxn to be isolated is (1 − p)2. This happens independently for

all agents in ξxn. Hence, when l grows and n ≥ t(l), the probability that a given agent x ∈ T n,l

observes at least k isolated agents approaches 1. By Corollary 2 for every n ≥ t(l) and agent

x = (i, j) such that i, j ≥ n it holds that Pp(x ∈ T n,l) > α. Hence for every k we can find large

enough l = l(k) such that for every for every n ≥ t(l) and agent x = (i, j) such that i, j ≥ n,

Pp(x ∈ T n,l)Pp(at least k agents out of l are isolates) > α. (10)

We shall identify Bt with the set {0, . . . , t} where each number 0 ≤ i ≤ t corresponds to

the agent x = (i, t− i) ∈ Bt. Fix k, l such that l ≥ l(k), and n ≥ t(l). For every agent i ∈ Bt

define a random variable hti to be equal 1 if the agent i ∈ Bt observes at least k isolated nodes

in ξin. By equation (10), for every large t and n ≤ i ≤ t− n it holds that Pσ,p(h
t
i = 1) > α.

In addition note that if 0 ≤ i, j ≤ t are such that |i − j| > n then ξin ∩ ξjn = ∅ with

probability 1 hence hti and h
t
j are independent random variables. Based on Lemma 3 it follows

that:

lim
t→∞

Pp(
∑

n≤i≤t−n

hti
t− 2n+ 1

> α) = 1. (11)

Hence in particular since n is finite,14

lim
t→∞

Pp(
∑
0≤i≤t

hti
t+ 1

> α) = 1. (12)

This concludes the proof of the lemma as

Pp(
rkt
bt
> α) ≥ Pp(

∑
0≤i≤t

hti
t+ 1

> α) = 1.

By Lemma 1 one can deduce that for p > p(α) a proportion α of agents in Bt has an access

to a growing number of isolated points. This in turn means that this set of agents can infer the

14Here we rely on the fact that bt = t+ 1.
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true state, and hence take the correct action, with arbitrarily high precision which is exactly

what we wanted to prove. Establishing this formally requires a little more work.

Assume that a given agent observes only isolated agents. If the agent knows the strategy

of the isolated agents then, as k grows to infinity, the agent learns the true state of the world

with arbitrarily high probability. Therefore, there exists a sequence {qk}k converging to 1 such

that if a given agent observes at least k isolated agents then he assigns the true state of the

world a probability that is greater than 1
2
with probability of at least qk.15

We fix an equilibrium strategy σ of Γ2p. For every agent i ∈ Bt we let Ai be the set of

isolated agents that i can observe. For every i we assign a random variable X t
i that equals

1 if conditional on observing only the actions of the agents in Ai the true true state has a

probability that is greater than 1
2
. We then have the following corollary.

Corollary 3. For every p ∈ (p(α), 1),16

lim
k→∞

lim
t→∞

Eσ,p(

∑
i∈Rkt

X t
i

rkt
) = 1.

Proof of Corollary 3. Note that Pσ,p(X
t
i = 1|i ∈ Rk

t ) ≥ qk. For every k we have by Lemma 2

that

lim
t→∞

Pσ,p(r
k
t = 0) = 0.

Hence for every k,

lim
t→∞

Eσ,p(

∑
i∈Rkt

X t
i

rkt
) ≥ qk.

Corollary 3 follows since limk→∞ qk = 1.

We now let Y t
i be the random variable that corresponds to the payoff of agent i ∈ Bt. It

must hold that Eσ,p(X t
i ) ≤ Eσ,p(Y

t
i ). This follows since observing more agents only improves

the expected payoff. Lemma 2 implies the following corollary.

Corollary 4. For every p ∈ (p(α), 1),

lim
k→∞

lim
t→∞

Eσ,p(

∑
i∈Rkt

Y t
i

rkt
) = 1.

15qk may be taken independently of the precise strategy of the isolated agents, as long they are best replying

with respect to their private belief.

16Set
∑

i∈Rkt
Xt
i

rkt
to be 0 if rkn = 0.
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Proof of Theorem 2. Lemma 2 shows that

lim
k→∞

lim
t→∞

Pσ,p(
rkt
t+ 1

> α) = 1.

Since for every k and t, the random variable
∑
i∈Rkt

Y ti

rkt
is bounded above by 1 it follows from

Corollary 4 that for every ε > 0,

lim inf
k→∞

lim inf
t→∞

Pσ,p(

∑
i∈Rkt

Y t
i

rkt
< 1− ε) = 0.

Therefore it must hold that,

lim
k→∞

lim
t→∞

Pσ,p(

∑
i∈Rkt

Y t
i

rkt
= 1) = 1.

As a result of Lemma 2 we can deduce that,

lim
k→∞

lim
t→∞

Pσ,p(

∑
i∈Rkt

Y t
i

t+ 1
> α) = lim

k→∞
lim
t→∞

Pσ,p(

∑
i∈Rkt

Y t
i

rkt

rkt
t+ 1

> α) = 1.

Hence it follows that for every ε > 0 there exists a k such that,

lim
t→∞

Pσ,p(

∑
i∈Rkt

Y t
i

t+ 1
> α) ≥ 1− ε,

Note that for every t, ∑
i∈Rkt

Y t
i

t+ 1
≤
∑

i∈Bt Y
t
i

t+ 1
.

Therefore,

lim
t→∞

Pσ,p(

∑
i∈Bt Y

t
i

t+ 1
> α) ≥ 1− ε,

Since ε was arbitrary it follows that,

lim
t→∞

Pσ,p(

∑
i∈Bt Y

t
i

t+ 1
> α) = 1.

which concludes the proof of our main theorem.

Proof of Theorem 3. Theorem 3 readily follows from the proof of Theorem 2. Lemma 3 demon-

strates that for every α < 1 and p > p(α) it holds for every k that in the limit an α proportion

of agents observe at least k isolated agents with probability one. When k grows the prior

probability of every agent in Rk
t converges to the true state. Therefore in particular, as signals

are bounded, a proportion of at least α ignores their private signals as t grows.
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We shall briefly discuss the generalization of the proof to the case where the dimension of

the lattice is m > 2. Proposition 2 holds for any m > 2 since a 2-dimensional lattice containing

the origin is embedded in any lattice of dimension m > 2. Therefore, Lemma 1 and Corollary

2 are also valid for any m > 2. For Lemma 2 note that in this case the probability that a given

node is isolated decreases to (1− p)m. But the proof of the lemma only relies on the fact that

this probability is bounded away from 0 independently for every node. In addition note that

the sum in equation (11) should be taken over all agents x ∈ Bt for which x− ≥ n. Since for

any fixed n, the proportion of such agents in Bt tends to 1 as t grow, equation (12) is also valid

for the general case when we replace t+1 with bt. The rest of the proof follows without change.
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