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Shantikumar (1990), introduced the load function as a method for loading a plant. The idea is 
that the decision maker loads the plant by looking at the work in process and trying to keep it 
"right" in some way. Other forms of this rule are known as CONWIP rules (Hopp et al., 1989; 
Knessl and Tier, 1990; Lazowska et al., 1984). In practice, a variation of those rules is more 
easily implemented. The procedure, which we feel is one of the most common rules in practice, 
tries to maintain the number of jobs in the factory roughly constant. This is the rule we are 
going to analyze in this paper. 

The reasons for delivering just a fixed number of all orders to the shop floor are many, and can 
be found in the desire to minimize confusion in the plant, avoiding trade-offs in order-
processing by the decision makers at lower levels in the organization, etc.  

In addition, often all classes of orders should not be pooled together without taking in account, 
for instance, their routing behavior. Thus the number of jobs in the factory may be a vector, 
since several classes of orders may be in process at the same time. For instance, orders for 
several products, or several types of customers, may be simultaneously considered in the 
loading of the plant. One may be interested in the individual performance of each class, 
delivery times being one of the most important measures of service in many cases. 

Thus, we are led to the study of loading rules that try to maintain the number of jobs in each of 
several classes roughly constant. These are input-output rules, in the sense that their 
implementation does not need an actual knowledge of the state of the factory. The rule it is 
easily implemented by monitoring the outputs and sending a new job into the factory every 
time a job finishes processing and leaves. Obviously the job should belong to the same class of 
goods as the one leaving the factory. Like the CONWIP rules, the rule is also in line with Just in 
Time approaches, since a job starts just when another job finishes. 

We will model the factory by a closed network of M/M/1 FIFO queues. This is a well known 
modeling approach, and sophisticated tools are available for its analysis (Walrand, 1988; Whitt, 
1984). We are deliberately choosing a very simple model, although powerful modeling 
extensions are available in the literature, especially in the field of computer performance 
evaluation. Variable service rates, other priority disciplines and types of stations can be added 
to the model, if so desired.  
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Even if the decision rule of a constant number of jobs is not strictly enforced, we feel that 
modeling a factory as a closed network of queues, and analyzing its behavior as a function of 
the network population, is the right approach for estimating production times. Indeed, when 
modeling a production system as an open network of queues, and then using elementary 
queuing theory to estimate production times, or delivery lags, one runs into problems with the 
heavily loaded centers. A heavily loaded center has utilization of nearly one, and therefore an 
elementary queuing approach announces waiting time equal to infinity, not giving any 
intuitive hints of the magnitude of the times involved. This hinders the utilization of queuing 
formulas for crude estimation, and leaves practitioners without the benefits of a simple approa-
ch that can provide intuitive, even if approximate, estimations to the delivery lags involved. 

Computing algorithms (Bruell and Balbo, 1980; Reiser and Lavenberg, 1980; Shantikumar and 
Gocmen, 1983; Walrand, 1988; Whitt, 1984) are readily available to analyze the behavior of 
such systems. From the point of view of the operations manager, concerned with the structure 
and performance of its factory, most of them suffer from two main drawbacks.  

First, they are very analytical. They are good at computing system performance measures once 
given the system configuration and parameters, but the concepts involved are remote from the 
operations domain. They provide little insight into understanding the way the design of the 
system relates to the performance measures. In addition they do not have any improvement 
concepts built in.  

Second, they work better for small populations. Indeed the exact analysis of a large system is 
hopeless for all of them. For instance, the MVA analysis would be impossible in terms of 
computer time or storage, for more than 10 classes and 10 individuals per class, since it 
involves the recursive calculation of all solutions for less than the final number of individuals 
in each class, 10 solutions in our case. In practice, a variety of ad-hoc approximating 
techniques are used for large populations (Sauer and Chandy, 1981). Most techniques obtain 
good approximations and reasonable computing time, but most of the time at the expense of 
further obscurities. 

In this paper we try to provide an approximate, albeit somewhat crude, approach that we feel 
does not have some of the problems above. It is asymptotic and it is mostly inspired in (Knessl 
and Tier, 1990; MacKenna and Mitra, 1984, 1986; Walrand, 1988). The approach combines 
capacity planning ideas, resource constrained flow calculations with elementary queuing 
concepts to construct an integrated framework where waiting times are analytically related to 
the goodness of decisions on loading the factory.  

Also, its degree of approximation is good for large populations (say for more than 20-40 jobs 
among all classes in the system) and degrades for small populations. Thus the proposed 
approach is complementary, in population terms, to the standard one. It also allows an easy 
analysis of the load-delivery lag trade-off. To this end, the computational approach we propose 
computes a whole one parameter load curve.  

Throughout the paper, the intuitive reasoning needed is just an extension of the classical 
deterministic capacity analysis. We are led to identify bottlenecks and production flow rates in 
the production centers, compatible with the capacity constraints. Then we determine the loads 
on the centers, their utilization in terms of the network population, and use the asymptotic 
character of our results to compute the delays via some M/M/1 reasoning. Finally, we aggregate 
the populations involved in a composite population, and use this aggregation to adjust the 
actual delays due to congestion to the case of a finite population. 
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The paper is organized as follows: Section 1 is just a reminder of the basic MVA technique that 
forms the starting point of our approach. Section 2 develops an imbedding of the MVA 
equations. We get a set of functional equations for the desired system properties. The equations 
are complicated, but by introducing two slow variation hypotheses, satisfied among other 
instances when the population vector grows unbounded, we get simple approximate approaches 
to the full set of functional equations. In section 3 we study some properties of the asymptotic 
solutions derived above and show how MVA analysis integrates both with classical capacity 
analysis and elementary queuing analysis. Section 4 dwells in computational issues. Section 5 
presents an "engineering procedure" that combines all concepts in a systematic three step 
procedure for the selection of a rule. Finally, section 5 presents a fully worked example. 

1. MVA Analysis of a Closed Queuing System 
We summarize here the classical MVA Analysis. Consider a closed Jackson network of M/M/1 
queues, with several classes of customers. Each class of customers follows a route in the 
network of queues, visiting several centers and waiting FIFO whenever the center is busy. Once 
the job is finished, it is replaced by an identical one. The number of classes will be denoted by 
m. The number of centers is n. The service time Si, depends only on the center and is identical 
for all classes in each center. More general systems can also be analyzed, but we feel the above 
model suffices for most applications, without introducing unnecessary complexities. The usual 
assumptions on those systems (Walrand, 1988) are assumed to hold.  

Some additional notation: 

  Population vector, with components ni 

  Number of jobs in system for class i and center j 

  Waiting time for the class i in center j 

  Arrival rate for class I at center j 

  Visit ratio 

 
Let N stand for the sum of the elements of n, i.e. the total number of items in all classes. As 
usual, the visit ratios of class i to center j are given for each class by a solution of the routing 
equations (Walrand, 1988), stating the long range equilibrium of each class in the network. The 
visit ratios are given up to a constant factor that can be dependent on the class. 

The theory of these networks is well understood, being the main result the so-called Arrival 
Theorem (see below). From this main result, one can derive the Mean Value Algorithm (MVA) 
(Reiser and Lavenberg, 1980), a procedure for computing mean values of numbers in system, 
waiting times and flow rates. 

The Mean Value Analysis relies on three basic properties of closed Jackson networks of M/M/1 
queues. The first is the Arrival Theorem: At jump times the customer that jumps sees the others 
with their invariant distribution, i.e. with the steady state distribution resulting from a 
population vector with the jumping customer removed. The second and third properties are 
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versions of Little's Law, applied to the whole system and to each center, respectively. The 
procedure proceeds to a solution via a recursion on the population vector.  

The mean value analysis formulas for an m-class, n-center closed queuing M/M/1 system 
are (Reiser and Lavenberg, 1980): 

Wj
i  ( n )   =  Sj  
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for i = 1,..., m, and  j = 1,...,n.  

2. An Imbedding of the MVA Equations 
In this section we derive an imbedding of (1)-(3) that is central to our approach. The idea is that 
for large values of the populations, it is possible to replace a discrete state space by a 
continuous one by taking fractions of the total population. This is a usual approach in 
asymptotic analysis (MacKenna and Mitra, 1984). 

In the spirit of (Knessl and Tier, 1990; MacKenna and Mitra, 1984, 1986), we introduce a small 
parameter ε  (going to zero) and define a vector b, with components bi = ni ε. One possible 
choice is ε = 1 / N, with N growing unbounded, in which case the b's are the proportions of 
each class in the total population, and they sum to 1. We do not restrict the b's to sum to one. 
Denoting their sum by B, we have ε = B / N.   

To derive the alternative form of (1)-(3), we start by substituting bi/ε  for ni  in them, and defining1: 
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Equations (1), (2) and (3) become:  
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j
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i
)           

 

(4)

 

                                              
1 All functions of b are at the same time functions of ε. Thus, we will normally suppress any explicit reference to ε. 
We also suppress the explicit dependence on b when it is clear from the context. 
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If B = 1, it is easy to interpret the meaning of the above quantities. The ν are the proportions of 
the total population in each class and in each of the centers. They sum to B and for each class 
their sum is bi. The x preserve their interpretation as flow rates, whereas the w are waiting 
times of class i customers in center j, per customer in the whole network.   

Now, for convenience, define  

y
j
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and  
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m

  y
j
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Except for an additional term on ε, the yj are the percentages of the total population accounted 
for all classes in center j. The unnatural term ε, will be justified on notational grounds later on. 
Observe that the denominator of (5) is independent of j. Therefore we can define the flow rate of 
class i as:  

x
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 Vk
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In terms of the flow rate of the class, it is possible to recover all other flow rates, by 
substituting in (5), as: 

xj
i
  =  x

i
  Vj

i

 

 Finally, define the matrix of loadings, A = [aij]  by: 

a i j  =  Vj
i
 Sj  

 

Now substitute (6) in (4) and (5), and use the above definitions to get: 
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Equations (7) and (8) give rise to the desired imbedding of the basic MVA ones (1)-(3). To this 
end, we allow any positive real values of the vector b and the parameter ε. Thus we are 
replacing the equations (1)-(3), defined on a countable set of values of (x,y), (one for each 
possible value of the class population vector n, a vector of integers) by a pair of functional 
equations (7)-(8) over the real vector b ≥ 0 and real parameter ε ≥ 0, having as unknowns two 
vector functions of b and ε: x(b,ε) and y(b,ε).  

For future reference we record (7)-(8) for the single class case: 

yj( B )  -  x( B ) a j yj (B - ε )   =  ε

x( B )  ∑
j

  a j  yj( B - ε )           =  B

 

(9)

 

Notice that, in justifying the imbedding (7)-(8), implicit use has been made of the asymptotic 
character of the analysis.  

Equations (7)-(8) are very difficult to solve, but by extended asymptotic considerations, 
approximated solutions can be obtained to a degree of approximation suitable for most 
practical production purposes.  

There are several ways of simplifying (7) and (8), leading to approximate solutions. The two 
basic assumptions we will be considering in this paper are: 

Hypothesis H0.- The changes in the y's, solution of (7)-(8), produced by a (small enough) 
decrease in the i-th class population proportion, i.e. changing bi by a small amount, are 
independent of the class i being changed, and only depend on the change of the B in the network. 

Hypothesis H1.- The y's in the solution of (7)-(8) are insensitive to small enough decreases in 
the i-th class population proportion. 

Observe that H0 is weaker than H1, since H1 postulates insensitivity to changes, whereas H0 
simply states that the change should be independent of the population being decreased. 

H1 can be easily proved to be true when the network population grows unbounded. Thus our 
approach is basically sound and the approximation is good for large populations. However, the 
introduction of H0 extends the range of the approximation. Hypothesis H0 can hold in cases 
other than the large population case, for example in cases of populations with similar flow rates 
and sojourn times in the network.  

H0 and H1 correspond to two fundamental ways to deal with a large network population. One 
is to assume that removing a customer changes the system in a way that does not depend on 
the class of the customer being removed. Thus, when a customer jumps, the state of the 
remaining network is roughly the same for all classes of jumping customers. The second is to 
assume that, to a first order, when the population is large enough, the effect of the removal of 
one customer is negligible. 
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a) Hypothesis H0: The single class approximation 

In H0 we formally mean that, to a first order approximation:  

yj
i
 ( b - ε ek )  =  yj

i
 ( b - ε e1 )         for all values of  k.

 

The net result of the hypothesis is that the system behaves as a single class network, with 
loadings defined as: 

j  =  ∑
i = 1

m

  aij  x
i
                                   a

 

(10)

 

the xi being the (unknown) rates in each of the individual classes. To see this, sum (7) and (8) 
over i and make use of the hypothesis to derive 

yj( b )  -  yj( b - ε e1 )   aj   =   ε

∑
j = 1

n

  a j  yj( b - ε e1 )   =   B

 

which shows that the flow rate for the reduced single class problem is x = 1, and the y's are 
identical to the ones in the original n class system.  

Notice the following implication of the above. Assume a proportionality to be maintained in the 
flow rates of the network require them to be proportional to a vector v. Define the revised one 
class loadings as: 

aj  =  ∑
i = 1

m

  aij  v
i
                                    

 

(11)

 

Then, equations (9) for the reduced single class would solve the m class problem, providing an 
H0-approximate solution to the full system. Of course, if we started with a desired set of 
population proportions, b, this proportion may not hold for this solution. The desired 
proportionality of the populations, b, is only obtained by using the exact flow rates xi in the 
calculation of the loadings (11). The closer the v's to the actual x's, the closer the solution of 
the aggregate one class problem will be to the exact solution of the initial m-class network. In 
this sense, H0 leads to an aggregation result, by showing how to aggregate classes in a single 
class, preserving in the process the properties of the whole system. 

 
b) Hypothesis H1: The asymptotic analysis 

Formally, H1 means we can replace the functions of b - εek by their corresponding functions of 
b in (7)-(8). Performing the replacement, (7)-(8) become: 
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All variables in (12) are to be positive. The third equation is just a recipe to compute the v's. 
Thus, when we refer to (12), we usually mean the first two equations of (12), for all values of 
i and j. We call equations (12) the asymptotic equations and refer to their solution as an 
asymptotic solution. By summing the first and second equations, and replacing the second in 
the first, we see that the sum of the yj is B + n ε, in accordance with their interpretation.  

Notice that the term aij x
i is the utilization of center j accounted by class i, ρij, as easily derived 

from the definition of the loadings, aij, and of the class flow rates, xi. The global utilization of 
center j denoted, as usual, by ρj is: 

ρj  =  ∑
i = 1

m

  a i j x
i∑

i = 1

m

 ρ
 ij

  =

 

The expression in parentheses in the first group of equations of (12) is thus 1- ρj. A (trivial) 
lemma in the appendix, asserts that zj = 1 - ρj ≥ 0, i.e. the slack in each center utilization must 
be non-negative. The slack is strictly positive whenever the center is not completely saturated, 
i.e. when the center is not a bottleneck for the current set of x's. 

By including the above conditions into (12), using the vector of slacks z, and a new variable 
vector P, to be interpreted below, one gets the following alternative formulation of (12): 

A
T
 x +  z   =  1

A  y  -  P   =  0

y
j
 z

j
  =  ε

P
i
 x

i
 =  b

i
           i = 1, . . . ,  m

 j = 1, . . . ,  n       ,

,
 

(13)

 

Letting ε = 0 in (13) we get the conditions for the limiting solution, i.e. the solution when the 
population goes to infinity. 

Conditions (13) play a central role in our development and deserve additional interpretation. 
Again, we assume that the b's have been normalized to sum to 1. First, let us remark that 
conditions (13) for a given normalization vector b and ε, as we will see shortly, determine 
uniquely the values of the x's and the y's. The x's represent the (asymptotic) flows of each class, 
in the operations parlance the production of each product class. We usually want all x's to be 
strictly greater than zero, if any production of every class is ever to take place. The productions 
are constrained by the capacities of the production centers. This is the meaning of the first set 
of conditions in (13), restricting the flow of production in each center below its capacity (i.e. 
requiring the positivity of the slacks).  
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For a finite population (ε > 0) and more than one production center, no center will have 
utilization ρ = 1, i.e. z = 0. This is required by the third equation of (12) asking for the product 
of zj and yj to be equal to ε > 0. Thus, we can algebraically solve for yj giving  

y j  =  
( 1 - ρj )

ε 
zj

1   =

 

Now, substituting the value of the y's in the second equation of (12) and replacing the 
definition of aij we get: 
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n
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n

 Vj
i
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The last equality comes from the presence in the next to last expression of the formula for the 
waiting time in an open M/M/1 queue, Wj(M/M/1). Thus, the last sum gives the sojourn time of 
class i items in a system with every queue behaving as an open M/M/1 queue. Replacing the 
value of Pi in the last condition of (13), we get: 
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where in the last expression we have also used the obvious notation for the number in system 
of class i in center j, when it is treated as an open M/M/1 queue. Therefore, multiplying by N, 
the last and first terms above give:  

n
i
  =  ∑

j = 1

n

 Nj
i
 (M/M/1)

 

revealing that the asymptotic approximation is equivalent to considering each center as an 
M/M/1 open queue, and requiring the total population of each class across all centers to be 
equal to the given population vector. Thus, the asymptotic formulation models exactly the 
problem of finding rates x's, such that, in steady state, an open network of M/M/1 queues with 
several classes has a stated population vector n. The above provides an interpretation of P as 
the total sojourn time in the system of each class, per customer in the network. 

The above implies the following facts which we record here for future reference:  

 
1) the total number of items in center j is  

N
j
  =  

z
j

(1 - z
j )

 

and thus the total number in the network, N, is the sum of the Nj.  
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2) The total production time per customer, sojourn time of class i per customer is: 

P
i
  =  ∑

j = 1

n

  a 
ij

  z
 j
-1

 

As the population grows, ε decreases, some of the centers will become saturated, its capacity 
will be completely used, and thus they will become bottlenecks. In this case, most of the items 
will queue up behind bottlenecks. Actually, queues in non-bottlenecks will account for a 
negligible amount of the population. Thus for large populations, we can ignore non-
bottlenecks. This remark allows an easy interpretation of the conditions (13) for ε = 0. The third 
conditions of (13) states that only bottlenecks can hold non-zero limiting proportions of the 
population. In addition, since bottlenecks have a utilization of 1, waiting time in a bottleneck is 
just the product of the service time times the number of items waiting in it.  

3. Existence and Uniqueness of Solutions to the Asymptotic Conditions 
We now study the properties of the solutions of (13). A central theoretical result in this respect 
is that the conditions (13) and the natural non-negativity of the rates and times are the Karush 
- Kuhn -Tucker Conditions for the optimization in (x,z) of the problem: 

 

(14) 

the y's being the multipliers of the NLP problem.  

This shows that given b and ε > 0, a solution to (13) in (x,z,y,P) exists and is unique, having all 
x's and z's greater than zero. The result is easily checked by writing down the KTL conditions 
and observing that since all elements of A are positive, and the objective is strictly concave, a 
(unique) optimal solution exists that has all components xi > 0 and zj > 0. Then the two last 
conditions in (13) can be used to determine y and P uniquely. When ε = 0, the same argument 
shows that for every b, (13) has a unique solution in the variables x, z, P. However the y´s are 
not necessarily unique. 

Conversely, given a vector x with AT x < 1, unique values for ε, b (with B = 1), z, y, and P 
exist, solving (13). This is checked by simple algebra as follows: From x we can uniquely 
compute z. Using ε as a parameter, solve for y in the third condition and substitute in the 
second, getting P as a function of ε. Finally plug this P into the fourth condition and require 
the b's to sum to 1, getting from this requirement the unique value of ε.    

A x solving AT x ≤ 1 gives rise to a limiting solution if some slack is zero. In this case, a 
constraint is saturated and the wait in this center is unbounded. Conversely, limiting solutions 
correspond to solutions of the above constraints with some slacks equal to zero. Otherwise by 
the third condition in (13) all y's should be zero, thus, by the second condition P = 0, 
contradicting the fourth condition.  
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Remember that the classical stationary capacity analysis problem would read in our case: 

 

(15)

 

where X usually contains the set xi ≥ 0, plus some other constraints that help the decision 
maker define an acceptable solution. Thus, the constraints in (14) are (a subset of) the classical 
capacity analysis constraints, defining a limit to the production of each class at each 
production center.  

A version of the NLP (14) appears at the core of some new algorithms for the polynomial solution 
of LP problems. As a function of ε it defines a family of weighted logarithmic barrier problems 
(Monteiro and Adler, 1989; Monteiro et al., 1990) for an LP with constraints Ax + I z = 1 and 
objective function identically zero, i.e. for a pure feasibility problem for the constraints. Compare, 
for instance, with the following weighted logarithmic barrier problem for the LP capacity problem 
with objective function cx: 

 

(16)

 

where di, hj ≥ 0  are the weights and µ ≥ 0 is a parameter. Remembering that the (weighted) 
central path of a LP is the locus as a function of µ of the solutions of (16), a one parameter 
family of approximating penalty problems, we see that conditions (13) are the defining 
conditions of a point in the central path of the pure feasibility problem, a point characterized 
by µ = ε and weights (1,b/ε).  

The role played by the central path in the new LP algorithms is, however, substantially different 
than the one played here. There, the calculation of the central path is just a way of approaching 
in polynomial time, and as µ goes to zero, the solution of the original LP. Here we are never 
approaching the solution of the LP problem, since, although we are letting µ go to zero, one of 
the weights is adjusted increasingly so that the penalty term to whom it applies never vanishes. 
Moreover, we are interested not so much in the solution for µ = 0 as in points of the path for 
different weighting vectors, since each point provides a point of a load curve.  

Actually conditions (13), in terms of the parameters ε and b, define a central surface on which we 
can define many paths. All functions [x(µ), z(µ), y(µ), P(µ), b(µ), e(µ)] of a single scalar parameter 
µ over the algebraic variety defined by (13) are paths of possible interest, depending on the 
operations management significance of the invariants defining them. The engineering solution, to 
be presented later, hinges on exploiting the operational properties of some such paths. 

Ma x     f  ( x 1,   . . . ,  xm   ) 
A

T 
  x     ≤   1

x  ∈   X 

Ma x  {   c   x       +     µ  ∑
i

  d i  l n  (   x i  )   +   µ  ∑
j   hj   l n   (  zj   )    } 

            
                  A   x     +     I   z     =   1 

      x   ≥  0     ,       z  ≥ 0

T 
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4. Solving the Approximating Problems Given ε and b 
In this section we consider numerical procedures to solve both the asymptotic problem and the 
single class approximation when ε and the population vector b are given. 
 
a) The asymptotic problem 

In principle, to solve (13) we could solve the related NLP problem (14). Although (14) is a 
simple NLPs, it belongs to the family of penalty function problems known to be badly 
conditioned. An alternative approach would be to use Newton’s Method in a way reminiscent of 
the interior point LP methods to find a point in the central path. However, and according to the 
collected computational evidence, iterative procedures do the job much faster and are easier to 
implement and understand. From this point of view (14) is more interesting than practical.  

To solve (12) for a given b and ε we write it as  

y
j
  =  ε  +  y

j
  ∑

i = 1

m

  a
 i j

 x
i

x
i
  = 

∑
j = 1

n

 a i j yj

b
i

 

(17)

 
and use this form to compute recursively values of yj. It is important to start with an initial y > 0 
with the sum of its components equal to B+ n ε. We use this initial set of y's to calculate the x's 
in the first set of equations (17), for i=1,..., m, and substitute the result in the right hand side of 
the second set of equations, obtaining a new value for the y's. The procedure is repeated until a 
selected tolerance is satisfied between two successive values of the y's. 

By decreasing the value of ε in steps dε, from a given initial value ε0, and proceeding towards 
zero, and by restarting each time the procedure from the solution to the previous value of ε, the 
above procedure can be used to trace a path of asymptotic solutions, leading to a limiting 
solution with ε = 0. 
 
b) The solution of the single class problem (9) 

The exact solution of (9) can be obtained for N integer by applying the full MVA analysis to it. 
However, for small ε the full MVA procedure requires us to perform 1/ε iterations. Once again, 
this fact makes the use of an approximation convenient. The Schweitzer (Lazowska et al., 1984) 
approximation is usually quite accurate and we recommend it for this case. The Appendix 
shows that the x is the positive root of the equation: 

 ∑
j = 1

n

 
 1 - (1 - ε) a

 j
 x

a
 j
 ε x

                   1   =

 

(18)

 

Given x, a bit of algebra shows that the y's can be computed as:  

y
j
  =  

1 - ( 1 - ε ) a
j
 x

a
j
 ε x

  +  ε
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5. An "Engineering" Procedure 
A crude summary of the foregoing results could claim that what we have accomplished is a kind 
of integration-separation property. In the asymptotic problem we have simultaneously integrated 
the relationship of constrained production flows with the waiting times resulting from queuing 
and shown the separability of the constrained-capacity and queuing-time reasoning. 

The x's determine the production characteristics of the system. They are responsible for the 
direct profits of the operation. The slacks, the z's, are responsible for the waiting properties. 
They originate the delivery time and associated inventories. You can compute the production 
characteristics via a straight forward flow analysis with constraints. Then use elementary 
queuing theory to deduce the waits from the slacks in the capacities.  

Since in the following we will have ε > 0 most of the time, we find it easier to use a version of 
(13) where all conditions, except for the first one, have been divided on both sides by ε, and a 
change of variables has been made, redefining P as P/ε and y as y/ε. This removes the character 
of "proportions per customer" of the problem variables, which become the full values of the 
associated properties. We then get the equivalent system: 

A
T
 x  +  z  =  1

A  y   -  P  =  0

y
j
 z

j
  =  1

P
i
 x

i
  =  n

i

j = 1,. . . ,  n

i = 1,. . . ,  m
 

(13)’

 

We will refer to the variables in (13)' as the unnormalized variables (total values) and the ones 
in (13) as the normalized variables (values per customer in the system). Notice that x's and z's 
are the same in both cases.  

A practical procedure to design an effective control rule of the type being analyzed has to 
concentrate on choosing an operating point n. This kind of specification is desirable from the 
control point of view. Making sure that the control rule implemented is the one desired is just a 
problem of input output monitoring. Starting from the right n, it is enough to replace every 
finished order by another for the same product to make sure the rule is implemented.  

On the other hand, it is not at all obvious how to pick a good n. This is not a primary design 
parameter for the operations manager, one that relates with his or her objectives or 
performance measures. As we have said, n is more in the nature of a control parameter, one 
that allows easy control of the system operation. The x's are more primary. It is easier to define 
a criterion of goodness for a set of x since they are part of the mental framework of the 
operations manager being the production flow rates. 

If a cost function could be specified for each of the sojourn times, a nonlinear problem would 
probably be a good approach to picking n by combining the contribution margin of the 
production with the penalty for long sojourns. Indeed, if we assume that g(P) is such a function, 
the design problem could be formulated as: 
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From a solution of the design problem, the control rule could be computed as n = P x. (the 
condition of (13) missing among the design problem constraints). Thus N would be equal to the 
sum of the components of n, and b would be the n normalized. If we do not bother about 
numerical problems, this NLP can be even reduced to the following unconstrained NLP  

 
where the inverse of a vector is the vector whose components are the inverses of the original 
components. The reason for the reduction lies on the fact that the quantity in square brackets is 
a penalty function for the constraints. 

However, we feel that from the operations manager perspective, the choice is better approached 
as the selection of a point in a "good set" of low dimension, goodness being characterized by 
some a priori desired property instead of a full approach to equations (13)'. Thus, from this 
point of view, we are led to the load curve as a tool for policy selection. To do this requires first 
a selection of the kind of load curve, equivalent to the selection of a one parameter "good set," 
and then picking the parameter for the selected point in the curve. 

Many families of load curves could be employed. For instance, the load curve for a constant 
proportion among classes, or the curve for a constant b, and parameter ε, could be calculated 
by the methods in section 4a. In the following we put forth a procedure based on the 
calculation of the load curve for some selected a priori path of the x's, x(µ), selected because of 
production considerations. 

Thus, from the operations manager point of view, we approach the computation of the 
operating policy as a three phase procedure: 

a) First you decide on your production strategy taking in account the competitive 
behavior of the firm. This means choosing a set of x's allowing the company to 
serve its customers needs in a satisfactory way.  

b) Second, you plan the production system, meaning you chose a desired load curve, a 
one parameter locus for the x's on the central surface defined by (13).  

c) Third, you examine the operation of the design, describing the variation of its 
throughput and its production time as the load in the system (the path parameter) 
changes along the selected curve. Then, you select one value of the load curve 
parameter as the operating point in the central surface.  

Obviously, in practice the procedure would be iterative since the operation of the system may 
mean a reconsideration of its design. 

Ma x  f( x )     +   g ( P) 
A x +   z  =   1 
P  =   A   y
yj  zj   =   1 
x≥  0   ,   z≥ 0    

T 

Ma x  f( x )    +     g( [  1   -   A x]
- 1

)
x ≥ 0 

   

A 

                                          

T 
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a) Solve a classical capacity analysis problem (16) 

The initial phase concentrates in the pure capacity problem (16). This is because (16) is closer to 
the operations manager perception of the global structure of the situation, obscuring boring 
details. Given the technology structure of the factory, the matrix A, the decision maker just has 
to pick a set of x's the production rates at each center, appropriate to the way of competing of 
the firm, i.e. of its approach to the market. You would probably like to introduce some side 
constraints to adjust the problem to your view of the world. We see that classical capacity 
analysis fits in nicely with this approach. Capacity analysis is the limiting technique as it 
belongs to the domain of the limit problem. It concentrates on picking a set of x's, without 
regard to timing or congestion considerations. 

The result of this step will give a desired set of x's, in principle chosen without concern for the 
time performance of the production system. Also, the result of this exercise will be the 
identification of bottlenecks, that is, production centers whose corresponding constraint holds as 
an equality for the chosen solution. Since this may be a limiting solution of (13), because of the 
existence of bottlenecks with z=0, the value of the sojourn times may be infinity.  

 
b) Decide on the operating path 

There are, at least, three natural approaches to selecting an operating curve: 

a)  Proportional production. Select the path x = µv for a fixed vector v, probably given 
by the x's in the previous solution to the limit problem. i.e. v is such that v ≥ 0, ATv ≤ 
1, v ⊕ ε  X, and is optimal in some sense. This is the well known practice of scaling 
down the production flows to reduce the load on the centers. We have seen this strategy 
applied under many forms. For instance, it may mean keeping reserve capacity, 
performing less than full loading, etc. 

b) Parametric paths. Paths obtained by applying parametric programming over the RHS 
to the pure capacity problem. This is a generalization of a) above. In this case, the x's 
form a piecewise linear path. Along this path the optimal value of the objective 
function in (15) decreases monotonically. 

c)  Proportional sojourn times. A particular case of parametric path is the path of 
proportional y's, or proportional sojourn times. We select a vector of y's so that the 
P's are in some desired proportions. Call this vector y0. For instance it could be 
obtained by a program of the form: 

 

Max g ( A

∑
j=1

n

yj = 1 + n

y ≥ 1

y )Max g ( A

∑
j=1

n

yj = 1 + n

y ≥ 1

y )

 

where the lower bound on y comes from the upper bound on z through the condition 
yj zj = 1. A path of the form y = µ y0 is then equivalent to the path z = 1/(µ y0), which 
can be written, by redefining the parameter, as z = µ 1/y0. This is a parametric change 
in the RHS of the capacity problem, reducing the case to b). 
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c) Pick a point in the loading curve 

Now we have to compute the performance characteristics of the points along the loading curve. 
We will refine the degree of approximation provided by H1, especially for small populations, by 
adjusting to H0.  

Keep in mind that the asymptotic approximation treats the system as a network of M/M/1 
queues with occupations 1-z. Then, given a path x(µ), and letting r (µ) = AT x(µ), the system 
properties of the asymptotic approximation (H1) are given by: 

  

y
j  =  

zj(µ)

1

z(µ)  =  1  -  r (µ)

(µ)

P (µ) =  ∑
j = 1

n

 aij yj(µ)

n
i
(µ) = P

i
(µ) x

i
(µ)

i

 

(19)

 

H1 suffers, as we have said, from serious drawbacks whenever the population is small. 
Therefore we propose to use here the single class approximation, exploiting the aggregation 
result explained in section 3. To this end, we combine H1 with the single class analysis, in an 
unified approximation scheme that refines the load curve under H0. By the remarks following 
(10), if we knew the right x(µ)'s we could solve the H0 approximation to (7)-(8) as a single class 
problem. The idea is to use, at every point µ, the solution of the asymptotic problem as an 
estimate for the x, calculate the loadings for a related single class problem and solve it. With 
the solution (ξ,ψ) for the single class problem, we once again slightly revise the b's to get the 
desired H0 solution of (7)-(8) for each point in the curve. Formally: 

Approximate solution of (7)-(8) under H0. Given b and ε, let (X ,Y) be a solution of (12) and 
(ξ, ψ ) a solution of (9) with  

a
 j

  =  ∑
i = 1

m

  a
 i j 

 X
i

     and     ∑
i = 1

m

 b
i

 B =

 

If we compute 

x
i

    =  X
i

   ξ

yj
i
  = 

aj

aij X
i

 (ψ( B ) - ε )

βi
 =  ∑

j

  yj
i

+  m
ε

 

Then (x,y) solve (7)-(8) under H0 with the second member of (8) replaced with β. Also  

∑
i

 βi  =  B    and     β  =  b + o(ε2 )
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The only a priori approximation is in the definition of x. The rest is exact under H0, coming from 
a rewriting of (8) using H0, substitution of ψj(B-e), computed via the single class equations as  

ψ
j
 ( B - ε )  =   

ξ a
j

ψ
j
( B ) - ε

 

and solving for the desired variables. Notice that the final ν's are just a proportional split of the 
ν in the single class problem with coefficients aijX

i = ρij, i.e., the traffic inten sities of each class 
at the center. 

6. Example 
We assume 3 classes, 4 centers and the visit ratios and service times of the table below.  

Visit Ratios Service
Center Class 1 Class 2 Class 3 Time

1
2

3

4

1
0

0

1

1
1

0

1

1
0

1

1

5
10

14

12

Visit Ratios Service
Center Class 1 Class 2 Class 3 Time

1
2

3

4

1
2

3

4

1
0

0

1

1
0

0

1

1
1

0

1

1
1

0

1

1
0

1

1

1
0

1

1

5
10

14

12

5
10

14

12  

the matrix A is then 

5
5

5

0
10

0

0
0

14

12
12

12

5
5

5

5
5

5

0
10

0

0
10

0

0
0

14

0
0

14

12
12

12

12
12

12  

Margins per unit of production are 1, 2 and 3 monetary units respectively.  

 
a) Solving the capacity planning problem 

Assume we solve the capacity planning model to obtain x = (0, 0.0119, 0.00714) with 
bottlenecks in centers 3 and 4, and thus z = (0.5833, 0.8810, 0, 0). Assume this solution is not 
adequate since we have commitments on product 1, derived from our approach to competing in 
products 2 and 3. By playing with constraints and from our knowledge of the company we find 
that an acceptable solution is x = (0.01, 0.014, 0.05), slacks z = (0.63, 0.86, 0.3, 0.112), 
y = (1.5873, 1.1628, 3.3333, 8.9286), P = (115.08, 126.71, 161.75) and resulting in parameter 
values of b = (0.1045, 0.1611, 0.7344) and e = 0.09081, equivalent to n = (1.1508, 1.7739, 
8.0873) and N = 11.012. The production flows and delays are referred to the unit of time used 
in specifying Sj. If we assume that in this case the S's were given in hours, the production flows 
are in units per hour and the waits in hours.  

 
b) Deciding on the operating path 

Now we decide on the load curve of the system. Assume that a desirable curve is proportional 
production. This may be because we want to reduce the activity, but keeping the market 
proportions of the products in the proportion present in the currently selected x. 
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We initially use the formulas (19). We have x(µ) = µ (0.01, 0.014, 0.05). The value of r(µ) = µ 
(0,37, 0,14, 0,7,0,888). Thus the slacks are given by z(µ) = 1 - µ (0,37, 0,14, 0,7,0,888). Since 
slacks are constrained to be positive, m can take any value in the range [0, 1 / 0.888] = [0, 1,126]. 
Figures 1-7 show the performance characteristics of the system. We display all quantities as 
functions of the number of jobs in system, N. 

 
Figure 1 
Value of the Flows x, with the Resulting Load 
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Figure 1 is just a restatement of Figure 7, since in the actual calculations x has been taken as 
the independent variable, and the total number of jobs in system has been calculated as the 
sum of the components of n. 

 
Figure 2 
Values of the Slacks, z, at Each Center 
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The slacks in Figure 2 show center 4 as the bottleneck of the operation. Here we see how fast 
the values of the slacks stabilize to non-zero values, meaning that the queuing in front of 
centers 1-3 builds up quickly to their open queue values. From then on, as we will see, all 
queuing takes place in front of center 4. 

Figure 3 
Normalized Values for the y's as a Function of the Load 
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Figure 3 shows the y's, related to the proportion of the total population in each center. The 
result is as expected. The funny shape of y4 is probably due to the changes in the population 
composition at low values of µ.  

Figure 4 
Unnormalized Values of y. Notice the Logarithmic Scale on the Ordinates 
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The unnormalized values of y in Figure 4 dramatically show the accumulation of items in 
center 4 as the load increases. The following figure, Figure 5, shows the behavior of the total 
sojourn time. It explodes, converging to a constant slope for all centers. We will see in Figure 6 
that the common slope is responsibility of the service time of center 4, which is the slope is 12 
(whose slope is 12??); since all waiting takes place in center 4, adding a unit to the system just 
increases the delay of everybody else by the amount of service.   

Figure 5 
Unnormalized Values of P, i.e., Total Sojourn Times 
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Figure 6 
Normalized Sojourn Times 
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Finally, Figure 7 shows the control rule. We see that for values of the total load larger than 40 
jobs, the proportion of jobs in each class remains roughly the same. This behavior shows that 
the analysis has also produced an approximate loading curve for a constant proportion of jobs.  
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Figure 7 
Normalized Values of the n's. (b's) 
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Finally, we show in Figure 8 the solution ξ of the one class problem that gives an indication of 
how close the asymptotic analysis is to the true solution of the problem. It may be seen that for 
values of the total population of 10 or more, the correction to the asymptotic x's, introduced by 
H0 is less than 10%. Thus H1, with its simple implications, is a true engineering tool for 
production systems design. 

Figure 8 
Single Class ξ Solution (Correction Multiplier) 
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Although we do not have full computational evidence of the degree of approximation to the 
true solution, we have applied the full Schweitzer approximation to our example and we record 
in Figure 9 the maximum percentage of difference between both approximations of the total 
number in system at each center.  
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Figure 9 
Percentage of Difference with Respect to Schweitzer Method 

 

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.1 1 10 100 1000

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.1 1 10 100 1000  

The maximum error is well below 5%, an adequate value for all practical purposes. The 
precision gained by computing the single class approximation exactly, i.e. using the MVA exact 
formulas is small due to the truncation errors in the imbedding. 

Finally Figure 9 shows the relative differences in the x's. Although much greater, observe that 
for values of the total population above 10, the percentage of difference remains below 10%, 
again consistent with the approach. 

 
Figure 10 
Relative Differences Among Between the x's 
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Appendix I 
A lemma 

 
Lemma. For all n and j , AT x ≤  1, and therefore ρj ≤  1. 

Proof. 

 
a) For all n, i and j it is true that: 

 

Indeed, the left hand side would be the number of customers of the class in center j if the 
additional one in the class were assigned totally to center j. The right side is the actual number 
of customers that should be less than the above. 

 
b) 

 

The first equality follows from Little's Law and the recursion on waiting time. Since λ(n) = x(n ε), 
the lemma follows by multiplying both sides times Sj. 
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Appendix II 
Solving (18) by Newton's Method 

 

In our notation the approximation assumes, in the formulas (7)-(8), that  

νj
i

( b - ε ek ) = { νj
i

( b ) if k ≠ i

( 1 - ε ) νj
i

( b ) if k = i
νj

i
( b - ε ek ) = { νj

i
( b ) if k ≠ i

( 1 - ε ) νj
i

( b ) if k = i
 

For the single class case, with n centers, the approximation specializes to: 

νj ( B )  = ( 1 - ε ) νj ( B   )       or        yj  ( B )  =  ( 1 - ε ) νj ( B   )  +  ε- ε - ε
 

Substituting in (9), solving for x in the second equation, replacing it in the first equation and 
remembering that because of normalization B = 1, we get: 

νj  =  

ε ∑
j

 aj  +  (1 - ε) ∑
j

 aj νj

ε aj  +  (1 - ε) aj νj

 

Therefore, to solve the approximate MVA equations we have to find a fixed point νj of a 
nonlinear mapping. It is possible to either carry out a recursive application of (18) starting from 
a nj, obtained from the y's of some previous approximation by subtracting ε from each one of 
them, or to find a value of x very easily by finding a root of a polynomial. Indeed, we can 
reduce the problem to that of finding an eigenvalue by making a projective transformation. 
Define: 

     ∑
j = 1

n

 a
j
  +  (1 - ε) ∑

j = 1

n

 a
j
 ν

j
z  = ε

 

(20)

 

and  vi = νi/z. Then the fixed point problem is equivalent to finding  α > 0, v ≥ 0, z > 0, solving 
the eigenvalue problem 

α v
j
  =  a

j
 z   +   (1- ε) a

j
 v

j
  

α z   =  z  ∑
j

 a
j
  +  (1- ε) ∑

j

 a
j
 v

j
ε

ε

 

(21)
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Appendix II (continued) 
 

The characteristic polynomial is obtained by solving for yj in the first set of equations of (21) 
and sticking the result in the last set. From (20), we see that α = 1/x. Thus, after some 
manipulations we find that x should be a solution of f = 0, where: 

∑
j = 1

n

 
 1 - (1 - ε) a

 j
 x

a
 j
 ε x

    -   1            f   =

 

whose derivative is: 

f'  =  ∑
j = 1

n

  
[1 - (1 - ε) a

 j
 x ]

2

a
 j
 ε

   

  

 
The Newton iteration is therefore: 

x + = x c - f / f' 

A good starting value is x = 1. No more than 2-5 iterations are needed to converge to very 
strict tolerances, since the function is very "steep" in the neighborhood of the solution. 
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